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Preface

These lecture notes are for the course Probability at ACSAI, University of Rome La Sapienza,

given in Fall 2022 jointly with Prof. Mauro Piccioni. The content is closely based on the

following lecture notes, all available online:

• James Norris: http://www.statslab.cam.ac.uk/∼james/Lectures/p.pdf

• Douglas Kennedy: http://trin-hosts.trin.cam.ac.uk/fellows/dpk10/IA/IAprob.html

• Richard Weber: http://www.statslab.cam.ac.uk/∼rrw1/stats/Sa4.pdf

Please notify silvestri@mat.uniroma1.it for comments and corrections.

Additional suggested readings:

• D. Bertsekas, J. Tsitsiklis: Introduction to probability (2008) Athena Scientific (available

online at MIT Open Course Ware).

• J. Blitzstein, J. Hwang, Introduction to probability, Taylor and Francis (available online

at Stat 110: Probability).

• Sheldon M Ross: A first course in Probability (2019) Boston, MA: Pearson.

Note: the parts marked with (*) are optional, and can be skipped with no harm.

mailto:silvestri@mat.uniroma1.it




CHAPTER 1

Discrete probability

1. Introduction

This course concerns the study of experiments with random outcomes, such as throwing a die,

tossing a coin or blindly drawing a card from a deck. Say that the set of possible outcomes is

Ω = {ω1, ω2, ω3, . . .}.

We call Ω sample space, while its elements are called outcomes. A subset A ⊆ Ω is called an

event.

Example 1.1 (Tossing a coin). Toss a coin: the sample space is Ω = {H,T} where H stands

for head and T stands for tail. Examples of events are:

{H} (the outcome is H)

{T} (the outcome is T )

{H,T} (the outcome H or T )

Example 1.2 (Throwing a die). Toss a normal six-faced die: the sample space is Ω =

{1, 2, 3, 4, 5, 6}. Examples of events are:

{5} (the outcome is 5)

{2, 4, 6} (the outcome is even)

{3, 6} (the outcome is divisible by 3)

Example 1.3 (Drawing a card). Draw a card from a standard deck: Ω is the set of all possible

cards, so that |Ω| = 52. Examples of events are:

A1 = {the card is a Jack}, |A1| = 4

A2 = {the card is Diamonds}, |A2| = 13

A3 = {the card is not the Queen of Spades}, |A3| = 51.
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8 1. DISCRETE PROBABILITY

Example 1.4 (Picking a natural number). Pick any natural number: the sample space is

Ω = N. Examples of events are:

{the number is at most 5} = {1, 2, 3, 4, 5}

{the number is even} = {2, 4, 6, 8 . . .}

{the number is not 7} = N \ {7}.

Example 1.5 (Picking a real number). Pick any number in the closed interval [0, 1]: the sample

space is Ω = [0, 1]. Examples of events are:

{x : x < 1/3} = [0, 1/3)

{x : x 6= 0.7} = [0, 1] \ {0.7} = [0, 0.7) ∪ (0.7, 1]

{x : x = 2−n for some n ∈ N} = {1, 1/2, 1/4, 1/8 . . .}.

Recall that a set Ω is said to be countable if there exists a bijection between Ω and a subset of

N. A set is said to be uncountable if it is not countable. Thus, for example, any finite set is

countable, the set of even (or odd) integers is countable, but R is uncountable. Note that the

sample space Ω is finite in the first two examples, infinite but countable in the third example,

and uncountable in the last example.

Remark 1.6. For the first part of the course we will restrict to countable sample spaces, thus

excluding Example 1.5 above.

We can now give a general definition.

Definition 1.7. Let Ω be any countable set (not necessarily finite) and denote by F the family

of all subsets of Ω. A function P : F → [0, 1] is called a probability measure if

- P(Ω) = 1,

- for any sequence of disjoint events (An)n≥1 it holds

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An).

The triple (Ω,F ,P) is called a probability space.

Remark 1.8 (*). Note that the family of sets F satisfies:

- Ω ∈ F ,

- if A ∈ F , then Ac ∈ F ,

- for every sequence (An)n≥1 in F , it holds
⋃∞
n=1An ∈ F .
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For this reason F is called a sigma algebra. When the state space Ω is uncountable one cannot

define the probability measure P on all subsets of Ω: in that case F will be strictly smaller than

the set of all subsets of Ω, and P will only be defined on F . We do not discuss the technical

issues concerning uncountable state spaces in this course.

We think of F as the collection of observable events. If A ∈ F , then P(A) is the probability of

the event A. In some probability models, such as the one in Example 1.5, the probability of

each individual outcome is 0. This is one reason why we need to specify probabilities of events

rather than outcomes.

1.1. Equally likely outcomes. The simplest case is that of a finite sample space Ω and

equally likely outcomes:

P({ω}) =
1

|Ω|
∀ω ∈ Ω.

Note that by definition of probability measure this implies that

P(A) =
|A|
|Ω|

∀A ∈ F .

In words, the probability of an event A is the number of outcomes in A, divided by the total

number of possible outcomes. Moreover

• P(∅) = 0,

• if A ⊆ B then P(A) ≤ P(B),

• if A ∩B = ∅ then P(A ∪B) = P(A) + P(B),

• P(A ∪B) = P(A) + P(B)− P(A ∩B),

• P(A ∪B) ≤ P(A) + P(B).

To check that P is a probability measure, note that P(Ω) = |Ω|/|Ω| = 1, and for disjoint events

(Ak)
n
k=1 it holds

P

(
n⋃
k=1

Ak

)
=
|A1 ∪A2 ∪ . . . ∪An|

|Ω|
=

n∑
k=1

|Ak|
|Ω|

=
n∑
k=1

P(Ak),

as wanted.

Example 1.9. When throwing a fair die there are 6 possible outcomes, all equally likely. Then

Ω = {1, 2, 3, 4, 5, 6}, P({i}) = 1/6 for i = 1 . . . 6.

So P(even outcome) = P({2, 4, 6}) = 1/2, while P(outcome ≤ 5) = P({1, 2, 3, 4, 5}) = 5/6.
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Example 1.10. Pick a card from a deck of 52. Then Ω is the set of cards, and |Ω| = 52.

Example of events are:

A = {pick the queen of hearts}

B = {pick a Diamond or a Jack}

C = {don’t pick an ace}

and P(A) = 1/52, P(B) = 16/52, P(C) = 48/52.

Example 1.11. Pick two cards from a deck of 52. Then Ω is the set of all ordered pairs of

cards, and examples of events are:

A = {pick an ace, then a 2}

B = {pick two diamonds}

C = {the first card is a jack}.

Can you write down the probability of the above events?

2. Exercises

Exercise 1. Take Ω = {a, b, c}. Write down the collection F of all subsets of Ω (that is,

the collection of all possible events). Repeat the exercise with Ω = {a, b, c, d}. Check that in

both cases |F| = 2|Ω|.

Exercise 2. Let Ω be a sample space, and A be an event. Show that P(Ac) = 1− P(A).

Exercise 3. What is F if Ω = ∅?

Exercise 4. Take equally likely outcomes on a finite set Ω. Show that if A and B are

events with A ⊆ B, then P(B \A) = P(B)− P(A) (note that this is always non-negative).

Exercise 5. Roll a die. What is the probability of seeing a number which is at most 4?

And at most 6?

Exercise 6. Roll two dice. What is the sample space Ω? Check that |Ω| = 36. Write down

the probability of the following events:

• A = {(1, 5)}
• B = {the first die gives 2}
• C = {the second die does not give 4}
• D = {both dice give an even number}
• E = Ω \ {(1, 5)}
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Exercise 7. Draw two cards from a deck of 52. What is the sample space Ω? Compute

|Ω|. Write down the probability of the following events:

• A = {the first card is an ace}
• B = {the second card is not a jack}
• C = {both cards are hearts}
• D = {the first card is a diamond, the second is hearts}
• E = {the first card is a diamond, the second is a 3}

Exercise 8. You have three books: Maths Stats and Physics. Throw them on a shelf,

assuming that all possible orderings are equally likely. What is the sample space Ω? Compute

|Ω|. Now pick the book on top. What is the probability that you picked the Maths book?

Exercise 9. Can you answer the questions of Exercise 8 in the case of n books?

Exercise 10. Out of a deck of 5 cards, you pick 3 and arrange them from left to right on

the table. What is the sample space Ω, and what is its cardinality? How about picking 3 cards

from a deck of n cards (assume n ≥ 3)?

Exercise 11. Again, pick 3 cards from a deck of 5, but now you keep them in your hands

and don’t care about their order. What is Ω, and what is |Ω|? Can you answer the same

question if you pick 3 cards from a deck of n?

Exercise 12. Pick 4 cards from a deck of n sequentially, reinserting each card in the deck

before picking the next one (drawing with repetition). What is Ω and what is |Ω|? Compute the

probability that the chosen cards are identical, and the probability that they are all different.

3. Combinatorial analysis

We have seen that, when working with equally likely outcomes on a finite set, in order to

compute the probability of events one needs to count the number of elements of Ω with a given

property. We now take a systematic look at some counting methods.

3.1. Multiplication rule. Take N finite sets Ω1,Ω2 . . .ΩN (some of which might coincide),

with cardinalities |Ωk| = nk. We imagine to pick one element from each set: how many possible

ways do we have to do so? Clearly, we have n1 choices for the first element. Now, for each

choice of the first element, we have n2 choices for the second, so that

|Ω1 × Ω2| = n1n2.
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Once the first two element, we have n3 choices for the third, and so on, giving

|Ω1 × Ω2 × . . .× ΩN | = n1n2 · · ·nN .

We refer to this as the multiplication rule.

Example 3.1. A restaurant offers 6 starters, 7 main courses and 5 desserts. The number of

possible three–course meals is then 6× 7× 5 = 210.

Example 3.2. Throw 3 dice. Then the number of outcomes given by an even number, followed

by a 6 and then by a number smaller than 4 is 3× 1× 4 = 12.

Example 3.3 (The number of subsets). Suppose a set Ω = {ω1, ω2 . . . ωn} has n elements. How

many subsets does Ω have? We proceed as follows. To each subset A of Ω we can associate a

sequence of 0’s and 1’s of length n so that the ith number is 1 if ωi is in A, and 0 otherwise.

Thus if, say, Ω = {ω1, ω2, ω3, ω4} then

A1 = {ω1} 7→ 1, 0, 0, 0

A2 = {ω1, ω3, ω4} 7→ 1, 0, 1, 1

A3 = ∅ 7→ 0, 0, 0, 0.

This defines a bijection between the subsets of Ω and the strings of 0’s and 1’s of length n.

Thus we have to count the number of such strings. Since for each element we have 2 choices

(either 0 or 1), there are 2n strings. This shows that a set of n elements has 2n subsets. Note

that this also counts the cardinality of the sigma algebra F associated to Ω, as well as the

number of functions from a set of n elements to {0, 1}.

3.2. Permutations. How many possible orderings of n elements are there? Label the

elements {1, 2 . . . n}. A permutation is a bijection from {1, 2 . . . n} to itself, i.e. an ordering of

the elements. We may obtain all permutations by subsequently choosing the image of element

1, then the image of element 2 and so on. We have n choices for the image of 1, then n − 1

choices for the image of 2, n− 2 choices for the image of 3 until we have only one choice for the

image of n. Thus the total number of choices is, by the multiplication rule,

n! = n(n− 1)(n− 2) · · · 1.

Thus there are n! different orderings, or permutations, of n elements. Equivalently, there are n!

different bijections from any two sets of n elements.

Example 3.4. There are 4! = 24 possible ways of arranging 4 books on a shelf.

Example 3.5. There are 52! possible orderings of a standard deck of cards.

3.3. Subsets. How many ways are there to choose k elements from a set of n elements?
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3.3.1. With ordering. We have n choices for the first element, n− 1 choices for the second

element and so on, ending with n− k + 1 choices for the kth element. Thus there are

(3.1) n(n− 1) · · · (n− k + 1) =
n!

(n− k)!

ways to choose k ordered elements from n. An alternative way to obtain the above formula is

the following: to pick k ordered elements from n, first pick a permutation of the n elements (n!

choices), then forget all elements but the first k. Since for each choice of the first k elements

there are (n− k)! permutations starting with those k elements, we again obtain (3.1).

3.3.2. Without ordering. To choose k unordered elements from n, we could first choose k

ordered elements, and then forget about the order. Recall that there are n!/(n− k)! possible

ways to choose k ordered elements from n. Moreover, any given k elements can be ordered in

k! possible ways. Thus there are (
n

k

)
=

n!

k!(n− k)!

possible ways to choose k unordered elements from n.

More generally, suppose we have integers n1, n2 . . . nk with n1 + n2 + · · ·+ nk = n. Then we

have (
n

n1 . . . nk

)
=

n!

n1! . . . nk!

possible ways to partition n elements in k subsets of cardinalities n1, . . . nk.

Example 3.6. Imagine to have a box containing n balls. Then there are:

• n!
(n−k)! ordered ways to pick k balls,

•
(
n
k

)
unordered ways to pick k balls,

•
(

n
n1 n2 n3

)
to subdivide the balls into 3 unordered groups of n1, n2 and n3 balls each.

3.4. Subsets with repetitions. How many ways are there to choose k elements from a

set of n elements, allowing repetitions?

3.4.1. With ordering. We have n choices for the first element, n choices for the second

element and so on. Thus there are

nk = n× n× · · · × n

possible ways to choose k ordered elements from n, allowing repetitions.
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3.4.2. Without ordering. Suppose we want to choose k elements from n, allowing repetitions

but discarding the order. How many ways do we have to do so? Note that näıvely dividing

nk by k! doesn’t give the right answer, since there may be repetitions. Instead, we count as

follows. Label the n elements {1, 2 . . . n}, and for each element draw a ∗ each time it is picked.

1 2 3 . . . n

** * . . . ***

Note that there are k ∗’s and n− 1 vertical lines. Now delete the numbers:

(3.2) ∗ ∗| ∗ | | . . . | ∗ ∗∗

The above diagram uniquely identifies an unordered set of (possibly repeated) k elements. Thus

we simply have to count how many such diagrams there are. The only restriction is that there

must be n− 1 vertical lines and k ∗’s. Since there are n+ k − 1 locations, we can fix such a

diagram by assigning the positions of the ∗’s, which can be done in(
n+ k − 1

k

)
ways. This therefore counts the number of unordered subsets of k elements from n, without

ordering. (This goes under the name of sticks and stars argument).

Example 3.7. Imagine to again have a box with n balls, but now each time a ball is picked, it

is put back in the box (so that it can be picked again). There are:

• nk ordered ways to pick k balls, and

•
(
n+k−1

k

)
unordered ways to pick k balls.

3.5. Recap of formulas.

• Permutations of n elements: n!.

• Choose k elements from n, no repetitions:

– with ordering:
n!

(n− k)!
,

– without ordering:

(
n

k

)
.

• Partition a set of n elements into k subsets of cardinalities n1, n2 . . . nk:

(
n

n1 n2 · · ·nk

)
.

• Choose k elements from n, with repetitions:

– with ordering: nk,

– without ordering:

(
n− 1 + k

k

)
.
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4. Exercises

Exercise 1. How many functions f : {1, 2, 3, 4, 5} → {0, 1} are there? How many functions

g : {0, 1} → {1, 2, 3, 4, 5}? Explain.

Exercise 2. How many possible ways of assigning 5 toys to 5 children are there? How

about 4 toys to 5 children (one child is left with no toy)? And 3 toys to 5 children?

Exercise 3. In how many different ways can you pick 3 cards from a deck of 7? Answer

the same question if each card is re-inserted in the deck after being picked.

Exercise 4. Toss 3 dice. How many possible outcomes are there?

Exercise 5. You pick 6 (distinct) numbers out of 90 to bet on in the national lottery.

What is the probability that the winning combination matches your choice (taking the order

into account)? What is the probability that the winning combination matches your choice of

numbers, possibly with a different order?

Exercise 6. A monkey types a 4 letters word using letters from the alphabet {Q,U,I,Z}
(it could use the same letter multiple times). What is the probability that it types the word

QUIZ?

Exercise 7. What is the probability that a uniformly chosen function f : {0, 1} →
{1, 2, 3, 4, 5} is not constant? How about f : {1, 2 . . . k} → {1, 2 . . . n}?

Exercise 8. [The birthday problem] If there are n people in the room, what is the

probability that at least two people have the same birthday?

Exercise 9. How many ways are there to divide a deck of 52 cards into two decks of 26

each? How many ways are there to do so, ensuring that each of the two decks contains exactly

13 black and 13 red cards?

Exercise 10. How many increasing functions f : {1, 2 . . . k} → {1, 2 . . . n} are there?

Assume k ≤ n.

Exercise 11 (*). How many non-decreasing functions f : {1, 2 . . . k} → {1, 2 . . . n} are

there?

Exercise 12. Four mice are chosen (without replacement) from a litter, two of which are

white. The probability that both white mice are chosen is twice the probability that neither is

chosen. How many mice are there in the litter?
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Exercise 13. Suppose that n (non-identical) balls are tossed at random into n boxes.

What is the probability that no box is empty? What is the probability that all balls end up in

the same box?

Exercise 14 (*). [Ordered partitions] An ordered partition of k of size n is a sequence

(k1, k2 . . . kn) of non-negative integers such that k1 + · · ·+kn = k. How many ordered partitions

of k of size n are there?

5. Properties of Probability measures

Let (Ω,F ,P) be a probability space, and recall that P : F → [0, 1] has the property that

P(Ω) = 1 and for any sequence (An)n≥1 of disjoint events in F it holds

P

⋃
n≥1

An

 =
∑
n≥1

P(An).

Then we have the following:

• 0 ≤ P(A) ≤ 1 for all A ∈ F ,

• if A ∩B = ∅ then P(A ∪B) = P(A) + P(B),

• P(Ac) = 1− P(A), since P(A) + P(Ac) = P(Ω) = 1,

• P(∅) = 0,

• if A ⊆ B then P(A) ≤ P(B), since

P(B) = P(A ∪ (B \A)) = P(A) + P(B \A) ≥ P(A).

• P(A ∪B) = P(A) + P(B)− P(A ∩B),

• P(A ∪B) ≤ P(A) + P(B).

5.1. Continuity of probability measures. For a non-decreasing sequence of events

A1 ⊆ A2 ⊆ A3 ⊆ · · · we have

P

⋃
n≥1

An

 = lim
n→∞

P(An).

Indeed, we can define a new sequence (Bn)n≥1 as

B1 = A1, B2 = A2 \A1, B3 = A3 \ (A1 ∪A2) . . . Bn = An \ (A1 ∪ · · ·An−1) . . .

Then the Bn’s are disjoint, and so

P(An) = P(B1 ∪ · · · ∪Bn) =

n∑
k=1

P(Bk).
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Taking the limit as n→∞ both sides, we get

lim
n→∞

P(An) =

∞∑
n=1

P(Bn) = P
( ⋃
n≥1

Bn

)
= P

( ⋃
n≥1

An

)
,

as wanted. Similarly, for a non-increasing sequence of events B1 ⊇ B2 ⊇ B3 ⊇ · · · we have

P

⋂
n≥1

Bn

 = lim
n→∞

P(Bn).

Example 5.1. Take Ω = N and let An = {1, 2 . . . n} for n ≥ 1. Then we have A1 ⊆ A2 ⊆ A3 ⊆
· · · and

lim
n→∞

P(An) = P

⋃
n≥1

An

 = P(Ω) = 1.

If, on the other hand, we set An = A5 for all n ≥ 5, then we find

lim
n→∞

P(An) = P

⋃
n≥1

An

 = P(A5).

Example 5.2. Take Ω = N and let Bn = {n, n + 1, n + 2 . . .} for n ≥ 1. Then we have

B1 ⊇ B2 ⊇ B3 · · · and

lim
n→∞

P(Bn) = P

⋂
n≥1

Bn

 = P(∅) = 0.

If, on the other hand, we set Bn = B3 for all n ≥ 3, then we find

lim
n→∞

P(Bn) = P

⋂
n≥1

Bn

 = P(B3).

5.2. Subadditivity of probability measures. For any events A1, A2 . . . An we have

(5.1) P

(
n⋃
k=1

Ak

)
≤

n∑
k=1

P(Ak).

To see this, define the events

B1 = A1, B2 = A2 \A1, B3 = A3 \ (A1 ∪A2) . . . Bn = An \ (A1 ∪ · · ·An−1).

Then the Bk’s are disjoint, and P(Bk) ≤ P(Ak) for all k = 1 . . . n, from which

P

(
n⋃
k=1

Ak

)
= P

(
n⋃
i=1

Bk

)
=

n∑
k=1

P(Bk) ≤
n∑
k=1

P(Ak).
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The same proof shows that this also holds for infinite sequences of events (An)n≥1

P

⋃
n≥1

An

 ≤∑
n≥1

P(An).

The above inequalities show that probability measures are subadditive, and are often referred

to as Boole’s inequality.

Example 5.3. We have already seen that P(A ∪B) ≤ P(A) + P(B), which is an example of

(5.1) with n = 2.

Example 5.4. Throw a fair die, so that Ω = {1, 2, 3, 4, 5, 6}. Then

P({1, 2, 3} ∪ {2, 4}) = P({1, 2, 3, 4}) =
4

6
,

while

P({1, 2, 3}) + P({2, 4}) =
3

6
+

2

6
=

5

6
,

so indeed P({1, 2, 3} ∪ {2, 4}) ≤ P({1, 2, 3}) + P({2, 4}).

Example 5.5. Toss a fair coin 3 times. Write H for head and T for tail. Then

P
(
exactly one head ∪ {(T,H,H)} ∪ {(H,T, T )}

)
=

= P({(H,T, T ), (T,H, T ), (T, T,H), (T,H,H)}) =
4

8
=

1

2
,

while

P
(
exactly one head) + P(T,H,H) + P(H,T, T ) =

3

8
+

1

8
+

1

8
=

5

8
.

5.3. Inclusion-exclusion formula. We have already seen that for any two events A,B

P(A ∪B) = P(A) + P(B)− P(A ∩B).

How does this generalise to an arbitrary number of events? For 3 events we have

P(A ∪B ∪ C) = P(A) + P(B) + P(C)− P(A ∩B)− P(A ∩ C)− P(B ∩ C) + P(A ∩B ∩ C).

A B

C
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In general, for n events A1, A2 . . . An we have

P

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n
P(Ai1 ∩Ai2 ∩ · · · ∩Aik).

You are not required to remember the general formula for this course, but you should learn it

for n = 2, 3.

Example 5.6. Pick a card from a standard deck of 52. Define the events

A = {the card is diamonds},

B = {the card is even},

C = {the cards is at least 10.}

Then

P(A) =
13

52
, P(B) =

24

52
, P(C) =

16

52
,

P(A ∩B) =
6

52
, P(A ∩ C) =

4

52
, P(B ∩ C) =

8

52
,

P(A ∩B ∩ C) =
2

52
,

which gives

P(A ∪B ∪ C) =
13 + 24 + 16− 6− 4− 8 + 2

52
=

37

52
.

5.4. Limsup and liminf of events. Let (An)n≥1 be a sequence of events. We define

lim sup
n→∞

An := {An infinitely often} =
⋂
n≥1

⋃
m≥n

Am,

lim inf
n→∞

An := {An eventually} =
⋃
n≥1

⋂
m≥n

Am.

In words:

• {An infinitely often} is the event that An holds for infinitely many n ≥ 1, that is the

event that for all n ≥ 1 there exists m ≥ n such that Am holds.

• {An eventually} is the event that all the An’s hold for n large enough, that is the

event that there exists n ≥ 1 such that for all m ≥ n the event Am holds.

Example 5.7. Toss a coin infinitely many times, and let An = {head on the nth toss} for n ≥ 1.

Then

lim sup
n→∞

An := {An infinitely often} = {infinitely many heads},

lim inf
n→∞

An := {An eventually} = {only heads from some point onwards}.

We will see later on that P(heads infinitely often) = 1 while P(heads eventually) = 0.
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6. Exercises

Exercise 1. Let A,B,C be three events. Express in symbols the following events:

(i) only A occurs,

(ii) at least one event occurs,

(iii) exactly one event occurs,

(iv) no event occurs.

Exercise 2. Show that for any two sets A,B it holds (A ∪B)c = Ac ∩Bc.

Exercise 3. Show that, for any three events A,B,C

P(Ac ∩ (B ∪ C)) = P(B) + P(C)− P(B ∩ C)− P(C ∩A)− P(A ∩B) + P(A ∩B ∩ C).

How many numbers in {1, 2 . . . 500} are not divisible by 7 but are divisible by 3 or 5?

Exercise 4. Let (An)n≥1 be an increasing sequence of events

A1 ⊆ A2 ⊆ A3 ⊆ . . .

and assume that

lim
n→∞

P(An) = p.

Explain why we can conclude that

P
( ⋃
n≥1

An

)
= p,

and

P
( ⋂
n≥1

Acn

)
= 1− p.

Exercise 5. For three events A,B,C

(i) Express P(A ∪B) using the inclusion/exclusion formula.

(ii) Express P(A ∪B ∪ C) using the inclusion/exclusion formula.

Exercise 6. Pick a card from a standard deck. Define the events

A = {the card is heart}

B = {the card is ≤ 5}

C = {the card is multiple of 3}.

Find P(A ∪B) and P(A ∪B ∪ C).
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Exercise 7. A company has 5 employees: 3 women and 2 men.

(i) How many different committees of 3 employees can be formed?

(ii) What is the probability that a committee of 3 employees is only made of women?

Suppose each week a committee of 3 employees is formed.

(iii) What is the probability that in 2 months (8 weeks) the committee has been only made

of women exactly once?

(iv) What is the probability that in 2 months (8 weeks) the committee has been only made

of women exactly k times?

Exercise 8. A committee of size r is chosen at random from a set of n people. Calculate

the probability that m given people will be in the committee.

Exercise 9. What is the probability that a non-decreasing function f : {1 . . . k} → {1 . . . n}
is increasing?

Exercise 10. Show that {
lim sup
n→∞

An

}c
= lim inf

n→∞
Acn.

Exercise 11. Take an event A and define An = A for all n ≥ 1 (the events are all the

same). Then show that lim supnAn = lim infnAn = A.

Exercise 12. Show that if the sequence of events (An)n≥1 is non-decreasing, then

lim sup
n→∞

An = lim inf
n→∞

An =
⋃
n≥1

An,

while if the sequence(An)n≥1 is non-increasing then

lim sup
n→∞

An = lim inf
n→∞

An =
⋂
n≥1

An.

7. Independence

We will now discuss what is arguably the most important concept in probability theory, namely

independence.

Definition 7.1. Two events A,B are said to be independent if

P(A ∩B) = P(A)P(B).
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Example 7.2. Throw two fair dice, and let

A = {the first number is even}, B = {the second number is ≤ 2}.

Then P(A) = 3
6 , P(B) = 2

6 and P(A ∩B) = 6
36 , so P(A ∩B) = P(A)P(B) and the events A and

B are independent.

Example 7.3. Pick a card from a standard deck. Let

A = {the card is heart}, B = {the card is at most 5}.

Then P(A) = 13
52 , P(B) = 20

52 and P(A∩B) = 5
52 , so P(A∩B) = P(A)P(B) and therefore A and

B are independent.

Example 7.4. Toss two fair dice. Let

A = {the sum of the two numbers is 6}, B = {the first number is 4}.

Then P(A) = 5
36 , P(B) = 1

6 and P(A ∩ B) = 1
36 . Thus P(A ∩ B) 6= P(A)P(B) and the events

are not independent. Intuitively, the probability of getting 6 for the sum depends on the first

outcome, since if we were to get 6 at the first toss then it would be impossible to obtain 6 for

the sum, while if the first toss gives a number ≤ 5 then we have a positive probability of getting

6 for the sum.

If, on the other hand, we replace A with

A′ = {the sum of the two numbers is 7},

then P(A′) = 6
36 , P(B) = 1

6 and P(A′ ∩B) = 1
36 . Thus P(A′ ∩B) = P(A′)P(B) and the events

are independent. That is, knowing that the first toss gave 4 doesn’t give us any information on

the probability that the sum is equal to 7.

An important property of independence is the following: if A is independent of B, then A is

independent of Bc. Indeed, we have

P(A ∩Bc) = P(A)− P(A ∩B)

= P(A)− P(A)P(B) (by independence of A,B)

= P(A)(1− P(B))

= P(A)P(Bc) (since P(Bc) = 1− P(B))

which shows that A and Bc are independent.

Example 7.5. Let A,B be defined as in Example 7.2, so that

Bc = {the second number is ≥ 3}.

Then P(Bc) = 1− P(B) = 4
6 , so P(A)P(Bc) = 12

36 = P(A ∩Bc), so A and Bc are independent.
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Example 7.6. Let A,B be defined as in Example 7.3, so that

Bc = {the card is at least 6}.

Then P(Bc) = 1− P(B) = 32
52 , so P(A)P(Bc) = 8

52 = P(A ∩Bc), so A and Bc are independent.

We can also define independence for more than two events.

Definition 7.7. We say that the events A1, A2 . . . An are independent if for any k ≥ 2 and

any collection of distinct indices 1 ≤ i1 < · · · < ik ≤ n we have

P(Ai1 ∩Ai2 ∩ . . . ∩Aik) = P(Ai1)P(Ai2) · · ·P(Aik).

Note that we require all possible subsets of the n events to be independent.

Example 7.8. Toss 3 fair coins. Let

A = {first coin H}, B = {second coin H}, C = {third coin T}.

Then P(A) = P(B) = P(C) = 1
2 and

P(A ∩B) =
1

4
= P(A)P(B)

P(B ∩ C) =
1

4
= P(B)P(C)

P(A ∩ C) =
1

4
= P(A)P(C)

P(A ∩B ∩ C) =
1

8
= P(A)P(B)P(C),

so A,B,C are independent.

At this point the reader may wonder whether independence of n events is equivalent to pairwise

independence, that is the requirement that any two events are independent. The answer is no:

independence is stronger than pairwise independence. Here is an example.

Example 7.9. Toss 2 fair coins, so that

Ω = {(H,H), (H,T ), (T,H), (T, T )}.

Let

A = {the first coin is T} = {(T,H), (T, T )},

B = {the second coin is T} = {(H,T ), (T, T )},

C = {get exactly one T} = {(T,H), (H,T )}.

Then P(A) = P(B) = P(C) = 1/2, P(A ∩B) = P(A ∩ C) = P(B ∩ C) = 1/4 so the events are

pairwise independent. On the other hand,

P(A ∩B ∩ C) = 0,
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so the events are not independent.

8. Conditional probability

Closely related to the notion of independence is that of conditional probability.

Definition 8.1. Let A,B be two events with P(B) > 0. Then the conditional probability of A

given B is

P(A|B) =
P(A ∩B)

P(B)
.

We interpret P(A|B) as the probability that the event A occurs, when it is known that the

event B occurs.

Example 8.2. Toss a fair die. Let A1 = {3} and B = {even} = {2, 4, 6}. Then

P(A1|B) =
P({3 and even})

P(even)
= 0.

This is intuitive: if we know that the outcome is even, the probability that the outcome is 3 is

zero.

If instead we take A2 = {2, 3, 4, 5, 6} then

P(A2|B) =
P({2, 4, 6})
P(even)

= 1.

This is also intuitive: if we know that the outcome is even, then we are certain that it is at

least 2.

Finally, take A3 = {4, 5, 6}, for which

P(A3|B) =
P({4, 6})
P(even)

=
2

3
.

An important property to note is that if A and B are independent, then P(A|B) = P(A). That

is, when two events are independent, knowing that one occurs does not affect the probability of

the other. This follows from

P(A|B) =
P(A ∩B)

P(B)
=

P(A)P(B)

P(B)
= P(A),

where we have used that A and B are independent in the second equality.
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9. Exercises

Exercise 1. Toss two fair dice. Determine whether the following events are independent:

(i) A = {the first die gives 4}, B = {the maximum outcome is ≤ 3},
(ii) A = {the first die gives 4}, B = {the maximum outcome is ≤ 5},
(iii) A = {the first die gives 5}, B = {the sum of the outcomes is 6},
(iv) A = {the first die gives 6}, B = {the sum of the outcomes is 7}.

Exercise 2. Toss a fair coin 3 times. Let

A = {at most two heads},

B = {the first coin toss gives head},

C = {all tails}.

(i) Are A,B independent?

(ii) Are A,B,C independent?

(iii) Are A \ C and B independent?

Exercise 3. In New York it rains with probability 2/5. If it rains, Claire takes the umbrella

with probability 9/10, and otherwise she takes the umbrella with probability 1/5. Given that

Claire has taken the umbrella, what is the probability that it is raining?

Exercise 4. Let A and B be independent. Show that Ac and Bc are independent.

Exercise 5. Let A,B be two events with P(B) > 0. Define P(A|B). Show that

(a) P(B|B) = 1,

(b) if A ⊆ B then P(A|B) = P(A)
P(B) ,

(c) if A ( B then P(A|B) < 1.

Exercise 6. Give an example of two events for which P(A|B) 6= P(B|A). Can you find two

events A,B of positive probability such that P(A|B)P(B) 6= P(B|A)P(A)? Explain.

Exercise 7. Draw a card from a standard deck. What is the probability that the card

is heart? What is the probability that the card is even, given that it is heart? What is the

probability that the card is even, given that it is ≤ 5? What is the probability that the card is

≤ 5, given that it is even?

Exercise 8. Let A,B be two events such that 0 < P(A) < 1 and 0 < P(B) < 1. We say

that B attracts A if P(A|B) > P(A). Show that if B attracts A then A attracts B.
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Exercise 9. What is the probability that a function f : {1, 2 . . . k} → {1, 2 . . . n} is constant,

given that it is non-decreasing? What is the probability that f : {1, 2 . . . k} → {1, 2 . . . n} is

non-decreasing, given that it is constant?

Exercise 10. You have four books: mathematics, physics, chemistry, biology. You arrange

the books on a shelf uniformly at random. Let A denote the event that the mathematics book

is in first position, and B the event that the biology book is in first position. Are A and B

independent? How about A and the event B′ = {the biology book is in second position}?
Given that the mathematics book is in first position, what is the probability that the biology

book is in second position?

10. The law of total probability

From the definition of conditional probability we see that for any two events A,B with P(B) > 0

we have

P(A ∩B) = P(A|B)P(B).

This shows that the probability of two events occurring simultaneously can be broken up into

calculating successive probabilities: first the probability that B occurs, and then the probability

that A occurs given that B has occurred.

Clearly by replacing B with Bc in the above formula we also have

P(A ∩Bc) = P(A|Bc)P(Bc).

But then, since B and Bc are disjoint,

P(A) = P(A ∩B) + P(A ∩Bc)

= P(A|B)P(B) + P(A|Bc)P(Bc).

This has an important generalisation, called law of total probability.

Theorem 10.1 (Law of total probability). Let (Bn)n≥1 be a sequence of disjoint events of

positive probability, whose union is the sample space Ω. Then for all events A

P(A) =

∞∑
n=1

P(A|Bn)P(Bn).

Proof. We know that, by assumption,⋃
n≥1

Bn = Ω.
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This gives

P(A) = P(A ∩ Ω) = P

A ∩
⋃
n≥1

Bn

 = P

⋃
n≥1

(A ∩Bn)


=
∑
n≥1

P(A ∩Bn) =
∑
n≥1

P(A|Bn)P(Bn).

�

Remark 10.2. In the statement of the law of total probabilities we can also drop the assumption

P(Bn) > 0, provided we interpret P(A|Bn)P(Bn) = 0 if P(Bn) = 0. It follows that we can

also take (Bn)n to be a finite collection of events (simply set Bn = ∅ from some finite index

onwards).

Example 10.3. An urn contains 10 black balls and 5 red balls. We draw two balls from the

urn without replacement. What is the probability that the second ball drawn is black? Let

A = {the second ball is black}, B = {the first ball is black}.

Then

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc) =
10

15
· 9

14
+

5

15
· 10

14
=

2

3
.

Example 10.4. Toss a fair coin. If it comes up head, then toss one fair die, otherwise toss 2

fair dice. Call M the maximum number obtained from the dice, and let

A = {M ≤ 4}.

What is the probability of A? We look at the two cases: either the coin came head and we

tossed one die, or the coin came tail and we tossed two dice. Thus let

B = {the coin gives H}.

By the law of total probabilities we have

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc)

= P(M ≤ 4|H)P(H) + P(M ≤ 4|T )P(T )

=
1

2
· 4

6
+

1

2
· 4 · 4

6 · 6
=

5

9
.

Example 10.5. Roll a fair dice: if you get k then toss a coin with probability k/6 of heads.

What is the probability that the coin gives head? We have that

Bk = {the die gives k}, k = 1, 2, 3, 4, 5, 6
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form a partition of Ω, since they are disjoint and their union is Ω. Moreover P(Bk) = 1/6 for

all k since the die is fair. Thus

P(head) =

6∑
k=1

P(A|Bk)P(Bk) =

6∑
k=1

k

6
· 1

6
=

1

36

6∑
k=1

k = 21/36.

11. Bayes’ theorem

Note that if A and B are two events of positive probability we have, by definition of conditional

probability,

P(A ∩B) = P(A|B)P(B) = P(B|A)P(A).

Often, one of the conditional probabilities is easier to compute than the other. Bayes’ theorem

tells us how to switch between the two.

Theorem 11.1 (Bayes’ theorem). For any two events A,B both of positive probability we have

P(A|B) =
P(B|A)P(A)

P(B)
.

Proof. We have

P(A|B) =
P(A ∩B)

P(B)
=

P(B|A)P(A)

P(B)
.

�

Example 11.2. Going back to Example 10.3, suppose we are told that the second ball is black.

What is the probability that the first ball was black? Applying Bayes’ theorem we find

P(B|A) =
P(A|B)P(B)

P(A)
=

9
14 ·

10
15

2
3

=
9

14
.

Example 11.3. Going back to Example 10.4, suppose we are told that M ≤ 2. What is

the probability that the coin came up head? Recall that B = {the coin gives H}, and let

C = {M ≤ 2}. By Bayes’ theorem, we have

P(B|C) =
P(C|B)P(B)

P(C)
=

P(C|B)P(B)

P(C|B)P(B) + P(C|Bc)P(Bc)
=

2
6 ·

1
2

2
6 ·

1
2 + 2·2

6·6 ·
1
2

=
3

4
.

12. Exercises

Exercise 1. Toss a fair coin. If you get head, toss another fair coin. What is the probability

of seeing two heads?

Exercise 2. Iterate the experiment in the previous exercise until the first tail (that is, toss

a fair coin and, at each step, if you get head toss it again). What is the probability of seeing n

heads?
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Exercise 3. Alice and Bob have one fair die each, and they play the following game. At

each round they simultaneously toss their dice: if none of them gets a 6 they move to the next

round, and otherwise whoever gets a 6 wins and the game ends. Note that there could be a tie,

if they both get a 6.

(i) What is the probability that the game ends in the first round?

(ii) What is the probability that the game lasts exactly 2 rounds?

Exercise 4. This exercise generalises Example 10.3. An urn contains b black balls and r

red balls. We draw two balls from the urn without replacement. What is the probability that

the second ball drawn is black?

Exercise 5. Toss a fair coin twice. If get (H,H) then roll 1 die, if (T, T ) roll 2 dice and

otherwise roll 3 dice. Let M denote the maximum number obtained from the dice. What is the

probability of the event A = {M ≤ 4}?

Exercise 6. Toss a biased coin with probability p of heads. If head, then Alice tosses 4

fair coins, whereas if tail she tosses 6 fair coins.

(i) Compute the probability that Alice sees 5 heads.

(ii) Compute the probability that Alice sees 2 heads.

(iii) Compute the probability that the initial biased coin gave head, given that Alice sees 2

heads.

(iv) Determine for which value of p the probability in (iii) equals 1/2.

Exercise 7. An urn contains two coins of type A and one coin of type B. When a type

A coin is flipped, it comes up head with probability 1/4, while when a type B coin is flipped

it comes up head with probability 3/4. A coin is randomly chosen from the urn and flipped.

What is the probability to get head? Given that the coin gave head, what is the probability

that it was a coin of type A?

Exercise 8. Students of a given class get grades A,B,C,D with probability 1
8 ,

2
8 ,

3
8 ,

2
8

respectively. If they misread the question, they usually do worse, getting grades A,B,C,D

with probability 1
10 ,

2
10 ,

3
10 ,

4
10 respectively. Each student misreads the question with probability

2
3 . What is the probability that:

(a) a student who read the question correctly gets A?

(b) a student who got B has read the question correctly?

(c) a student who got C has misread the question?

(d) a student who misread the question got C?

(e) a student gets D?



30 1. DISCRETE PROBABILITY

Exercise 9. Independent trials are performed, each with probability p of success. Let Pn

be the probability that n trials result in an even number of successes. Show that

Pn =
1

2
(1 + (1− 2p)n).

13. Some natural probability distributions

Up to this point in the course we have only worked with equally likely outcomes. On the other

hand, many other choices of probability measures are possible. We will next see some some of

them, which arise naturally.

Definition 13.1. A probability distribution, or simply distribution, is a probability measure on

some (Ω,F). We say that a distribution is discrete if Ω is a discrete set.

For discrete Ω we always take the σ-algebra F to be the set of all subsets of Ω. In particular, it

contains all sets {ω}, ω ∈ Ω, made of a single outcome. Thus, if P is a probability distribution,

we can write

pω = P({ω}).

Note that pω ∈ [0, 1] for all ω ∈ Ω, and∑
ω∈Ω

pω = P(Ω) = 1.

Moreover, P is uniquely determined by the collection (pω)ω∈Ω, that we call weights. We think

of the weight pω as the probability of seeing the outcome {ω}, when sampling according to P.

We now list several natural probability distributions.

13.1. Bernoulli distribution. Take Ω = {0, 1} and define P to be the probability distri-

bution given by the weights

p1 = p, p0 = 1− p.

Then P models the number of heads obtained in one biased coin toss (the coin gives head

with probability p and tail with probability 1− p). Such P is called Bernoulli distribution of

parameter p, and it is denoted by Bernoulli(p).

13.2. Binomial distribution. Fix an integer N ≥ 1 and let Ω = {0, 1, 2 . . . N}. Define

P to be the probability distribution given by the weights

pk =

(
N

k

)
pk(1− p)N−k, 0 ≤ k ≤ N.
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Then P models the number of heads in N biased coin tosses (again, the coin gives head with

probability p, and tail with probability 1 − p). Such P is called Binomial distribution of

parameters N, p, and it is denoted by Binomial(N, p). Note that

P(Ω) =
N∑
k=0

pk =
N∑
k=0

(
N

k

)
pk(1− p)N−k = (p+ (1− p))N = 1.

13.3. Geometric distribution. Let Ω = {1, 2, 3 . . .}, and define P as the distribution

given by the weights

pk = (1− p)k−1p, k ≥ 1.

for all k ≥ 1. Then µ models the number of biased coin tosses up to (and including) the first

head. Such P is called Geometric distribution of parameter p, and it is denoted by Geometric(p).

Note that

P(Ω) =
∞∑
k=1

pk = p
∞∑
k=1

(1− p)k−1 = p
∞∑
k=0

(1− p)k =
p

1− (1− p)
= 1.

13.4. Poisson distribution. Let Ω = N, and for a fixed parameter λ ∈ (0,+∞) let P be

the probability distribution given by the weights

pk =
e−λλk

k!
, k ≥ 0.

Such P is called Poisson distribution of parameter λ, and it is denoted by Poisson(λ). Note

that

P(Ω) =

∞∑
k=0

e−λλk

k!
= e−λeλ = 1.

This distribution arises as the limit of a Binomial distribution with parameters N, λN as N →∞.

Indeed, if pk(N,λ/N) denote the weights of a Binomial(N,λ/N) distribution, we have

pk(N,λ/N) =

(
N

k

)(
λ

N

)k (
1− λ

N

)N−k
=
N(N − 1) · · · (N − k + 1)

Nk

(
1− λ

N

)N−k λk
k!
−→ e−λλk

k!

as N →∞, since

N(N − 1) · · · (N − k + 1)

Nk
→ 1,

(
1− λ

N

)N
→ e−λ,

(
1− λ

N

)−k
→ 1.

14. Exercises

Exercise 1. Let Ω = {0, 1, 2}. How many events are there on Ω? Consider the probability

distribution on Ω given by the weights p0 = 1/2, p1 = 1/3, p2 = 1/6. Check that this is a valid

probability distribution. Compute P(A) for all A events on Ω.
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Exercise 2. An infinite sequence of independent trials is to be performed. Each trial

results in a success with probability p ∈ (0, 1), and a failure with probability 1− p. Determine

the probability that:

(a) no success occurs in the first n trials,

(b) at least one success occurs in the first n trials,

(c) exactly k successes occur in the first n trials,

(d) the first success occurs exactly on the nth trial.

Exercise 3. An infinite sequence of independent trials is to be performed. Each trial

results in a success with probability p ∈ (0, 1), and a failure with probability 1− p. What is the

probability distribution of the number of trials until (and including) the first success? Write

down the corresponding weights (pk)k≥1.

Exercise 4. A variant of the geometric distribution counts the number of tails until the

first head, when we have a sequence of independent coin tosses with probability p of heads.

Explain why in this case Ω = {0, 1, 2, 3 . . .} with

pk = (1− p)kp, k ≥ 0,

and check that this is a valid probability distribution.

Exercise 5. Each day of the week James flips a biased coin: if it comes up head (which

happens with probability p), then he goes out for a walk. What is the distribution of the

number of times James goes for a walk in one week? Write down the corresponding weights

(pk)0≤k≤7.

Exercise 6. Prove the identity

(a+ b)N =
N∑
k=0

(
N

k

)
akbN−k

by reasoning as follows.

• Note that (a+ b)N = (a+ b) · (a+ b) · (a+ b) · · · (a+ b).

• Each term in the above product is a monomial of degree N , of the form akbN−k for

some 0 ≤ k ≤ N .

• For any fixed k between 0 and N , there are exactly
(
N
k

)
monomials of the form akbN−k.
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Exercise 7. Let Ω = {0, 1, 2 . . .} and consider the collection of non-negative numbers

qk = e−λk, k ≥ 0.

Show that these are normalizable to a probability distribution if and only if λ ∈ (0,∞).

Assuming this is the case, compute C such that the collection (pk)k≥0 with pk = Cqk is a

probability distribution on Ω.

Exercise 8. On Ω = {1, 2, 3 . . .} consider the collection of weights (pk)k≥1 with pk = 1/k.

Show that this is not normalizable to a probability distribution. Show that, on the other

hand, the collection of square weights (qk)k≥1 with qk = p2
k is normalizable to a probability

distribution.

Exercise 9. Show that if |Ω| = +∞ then we cannot define a probability measure on Ω

such that all outcomes are equally likely.

Exercise 10. Tom is undecided as to whether to take a Mathematics course or a Literature

course. He estimates that the probability of getting an A would be 1/3 in a Maths course, and

1/2 in a Literature course. Suppose he chooses which course to take by tossing a fair coin: what

is the probability that he gets an A? Suppose that instead he tosses a biased coin: if it comes

up head, which happens with probability p ∈ (0, 1), he takes the Maths course, and otherwise

he takes the Literature course. What is the probability that Tom gets an A?

Exercise 11. At a certain stage of a criminal investigation the inspector is 60 per cent

convinced of the guilt of a certain suspect. Suppose, however, that a new piece of evidence

is uncovered: it is found that the criminal is left-handed. If the probability of being both

left-handed and non-guilty is 2/25, how certain of the guilt of the suspect should the inspector

be if it turns out that the suspect is left-handed?

Exercise 12. Toss a biased coin, which gives head with probability p ∈ (0, 1) and tail with

probability 1− p. If it comes up head, roll two dice and record the sum. If tail, pick a card

from a standard deck and record its number (between 1 and 13). What is the probability that

the number you have recorded is 4? What is the probability that it is ≤ 2?

15. Random variables

It is often the case that when a random experiment is conducted we don’t just want to record

the outcome, but perhaps we are interested in some functions of the outcome.

Definition 15.1. A random variable on (Ω,F) taking values in a discrete set S is a function

X : Ω→ S.
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Typically S ⊆ R or S ⊆ Rk, in which case we say that X is a real-valued random variable.

Example 15.2. Toss a biased coin. Then Ω = {H,T}, where H,T stands for head and tail.

Define

X(H) = 1, X(T ) = 0.

Then X : Ω→ {0, 1} counts the number of heads in the outcome.

Example 15.3. Toss two biased coins, so that Ω = {H,T}2. Define

X(HH) = 2, X(TH) = X(HT ) = 1, X(TT ) = 0.

Then X : Ω→ {0, 1, 2} counts the number of heads in 2 coin tosses.

Example 15.4. Roll two dice, so that Ω = {1, 2, 3, 4, 5, 6}2. For (i, j) ∈ Ω, set

X(i, j) = i+ j.

Then X : Ω→ {2, 3 . . . 12} records the sum of the two dice. We could also define the random

variables

Y (i, j) = max{i, j}, Z(i, j) = i.

Then Y : Ω → {1, 2, 3, 4, 5, 6} records the maximum of the two dice, while Z : Ω →
{1, 2, 3, 4, 5, 6} records the outcome of the first die.

Example 15.5. For a given probability space (Ω,F ,P) and A ∈ F , define

1A(ω) =

1, for ω ∈ A,

0, for ω /∈ A.

Then 1A : Ω→ {0, 1} tells us whether the outcome was in A or not. Note that

(i) 1Ac = 1− 1A,

(ii) 1A∩B = 1A1B,

(iii) 1A∪B = 1− (1− 1A)(1− 1B).

You should prove (iii) as an exercise.

For a subset T ⊆ S we denote the set {ω ∈ Ω : X(ω) ∈ T} simply by {X ∈ T}. Since X takes

values in a discrete S, we let

px = P(X = x)

for all x ∈ S. The collection (px)x∈S is referred to as the probability distribution of X. If the

probability distribution of X is, say, Geometric(p), then we say that X is a Geometric random

variable of parameter p, and write X ∼ Geometric(p). Similarly, for the other distributions we

have encountered write X ∼ Bernoulli(p), X ∼ Binomial(N, p), X ∼ Poisson(λ).
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Given a random variable X taking values in S ⊂ R, the function FX : R→ [0, 1] given by

FX(x) = P(X ≤ x)

is called distribution function of X. Note that FX is piecewise constant, non-decreasing,

right-continuous, and

lim
x→−∞

FX(x) = 0, lim
x→+∞

FX(x) = 1.

Example 15.6. Toss a biased coin, which gives head with probability p, and define the random

variable

X(H) = 1, X(T ) = 0.

Then

FX(x) =


0, if x < 0

1− p, if x ∈ [0, 1)

1, if x ≥ 1.

Note that FX is piecewise constant, non-decreasing, right-continuous, and its jumps are given

by the weights of a Bernoulli distribution of parameter p.

Knowing the probability distribution function is equivalent to knowing the collection of weights

(px)x∈S such that px = P(X = x), and hence it is equivalent to knowing the probability

distribution of X.

Definition 15.7 (Independent random variables). Two random variables X,Y , taking values

in SX , SY respectively, are said to be independent if

P(X = x, Y = y) = P(X = x)P(Y = y)

for all (x, y) ∈ SX × SY . In general, the random variables X1, X2 . . . Xn taking values in

S1, S2 . . . Sn are said to be independent if

P(X1 = x1, X2 = x2 . . . Xn = xn) = P(X1 = x1)P(X2 = x2) · · ·P(Xn = xn)

for all (x1, x2 . . . xn) ∈ S1 × S2 × · · · × Sn.

Note that if X1, X2 . . . XN are independent, then for any k ≤ N and any distinct indices

1 ≤ i1 < i2 < · · · < ik ≤ N , the random variables Xi1 , Xi2 . . . Xik are independent. You are

asked to prove this as an exercise.

16. Exercises

Exercise 1. Let X ∼ Bernoulli(p). Determine the distribution of Y = 1−X.
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Exercise 2. Show that for any two sets A,B

1A∪B = 1− (1− 1A)(1− 1B).

Exercise 3. Show that if A,B are independent events then 1A and 1B are independent

random variables. Compute the expectation of 1A∩B and 1A∪B.

Exercise 4. Roll two dice, and let Ω = {1, 2 . . . 6}2 be the associated sample space. Define

the random variable X : Ω→ {1, 2 . . . 6} by

X(i, j) = max{i, j}

for all (i, j) ∈ Ω. Write down the weights of the random variable X. Draw the graph of the

associated distribution function FX , and check that

lim
x→−∞

FX(x) = 0, lim
x→+∞

FX(x) = 1.

Exercise 5. Roll two dice, and let Ω = {1, 2 . . . 6}2 = {(i, j) : 1 ≤ i, j ≤ 6} be the

associated sample space. Consider the event A = {i = 4}, and define the random variable

X(i, j) = 1A(i, j) =

1 if i = 4,

0 if i 6= 4.

Define further the random variable

Y (i, j) = i+ j.

Determine whether X and Y are independent.

Exercise 6. Let X be a random variable taking values in {0, 1, 2} with probabilities p0 =

1/3, p1 = 1/4 and p2 = 5/12. Draw the distribution function of X, namely FX(x) = P(X ≤ x).

Exercise 7. Draw the distribution function of a geometric random variable of parameter

p = 1/2.

Exercise 8. Let X,Y, Z be independent random variables taking values in SX , SY , SZ

respectively. Show that X,Y, Z are pairwise independent.

Exercise 9. Generalise the above exercise by showing that if X1, X2 . . . XN are independent,

then for any k ≤ N and any distinct indices 1 ≤ i1 < i2 < · · · < ik ≤ N , the random variables

Xi1 , Xi2 . . . Xik are independent.



17. EXPECTATION 37

Exercise 10. Roll a fair die repeatedly. Let N and M denote the number of tosses until

the first 1 and the second 1 respectively.

(i) Compute P(M = 2). Are the events {N = 1} and {M = 2} independent?

(ii) Compute P(M = N + 1) (the probability of seeing the second 1 right after the first 1).

Are the events {N = 1} and {M −N = 1} independent?

(iii) Are N and M independent? Are N and M −N independent? Explain.

(iv) Compute P(N = k|M = 5) for k = 1, 2, 3, 4.

17. Expectation

From now on all the random variables we consider are assumed to take real values, unless

otherwise specified. We say that a random variable X is non-negative if X takes values in

S ⊆ [0,∞).

Definition 17.1 (Expectation of a random variable). For a random variable X : Ω→ S we

define the expectation (or expected value, or mean value) of X to be

E(X) =
∑
x∈S

xP(X = x).

Thus the expectation of X is the average of the values taken by X, averaged with weights

corresponding to the probabilities of the values.

Example 17.2. If X ∼ Bernoulli(p) then

E(X) = 1 · P(X = 1) + 0 · P(X = 0) = p.

Example 17.3. If X ∼ Binomial(N, p) then

E(X) =

N∑
k=0

k

(
N

k

)
pk(1− p)N−k = Np

N∑
k=1

(
N − 1

k − 1

)
pk−1(1− p)(N−1)−(k−1)

= Np

N−1∑
k′=0

(
N − 1

k

)
pk
′
(1− p)N−1−k′

︸ ︷︷ ︸
1

= Np.

Example 17.4. If X ∼ Geometric(p) then

E(X) =
∞∑
k=1

k(1− p)k−1p = p
∞∑
k=1

k(1− p)k−1︸ ︷︷ ︸
− d
dp

(1−p)k

= −p d
dp

( ∞∑
k=1

(1− p)k
)

= −p d
dp

( 1

1− (1− p)

)
= −p

(
− 1

p2

)
=

1

p
.
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Example 17.5. If X ∼ Poisson(λ) then

E(X) =
∞∑
k=0

k
e−λλk

k!
= λe−λ

∞∑
k=1

λk−1

(k − 1)!
= λe−λ

∞∑
k′=0

λk
′

k′!︸ ︷︷ ︸
eλ

= λ.

Remark 17.6. Note that, if X takes infinitely many values and it is non-negative, then the

expectation of X might diverge to +∞ (see Exercise 18 below). We remark that if X takes

infinitely many values of both signs, then E(X) may be ill-defined (one would have to look at its

positive and negative part separately). We do not address this latter issue in this course.

We have defined the expectation of a random variable X : Ω→ SX as

E(X) =
∑
x∈SX

xP(X = x).

In what follows, it will be convenient to note the equivalent formula

E(X) =
∑
ω∈Ω

X(ω)P({ω}).

The equivalence of the two formulas for E(X) follows from reindexing the summation according

to the values of the random variable X:∑
ω∈Ω

X(ω)P({ω}) =
∑
x∈SX

∑
ω∈Ω:X(ω)=x

X(ω)P({ω}) =
∑
x∈SX

x
∑

ω∈Ω:X(ω)=x

P({ω})

︸ ︷︷ ︸
P(X=x)

=
∑
x∈SX

xP(X = x).

Properties of the expectation. The expectation of a random variable X : Ω → S

satisfies the following properties, some of which we state without proof:

(1) If X ≥ 0 then E(X) ≥ 0, and E(X) = 0 if and only if P(X = 0) = 1.

(2) If c ∈ R is a constant, then E(c) = c and E(cX) = cE(X).

(3) For random variables X,Y , it holds E(X + Y ) = E(X) + E(Y ).

Proof.

E(X + Y ) =
∑
ω∈Ω

(X + Y )(ω)P({ω}) =
∑
ω∈Ω

(X(ω) + Y (ω))P({ω})

=
∑
ω∈Ω

X(ω)P({ω}) +
∑
ω∈Ω

Y (ω)P({ω}) = E(X) + E(Y ).

�

The above properties generalise by induction, to give that for any constants c1, c2 . . . cn and

random variables X1, X2 . . . Xn it holds

E

(
n∑
k=1

ckXk

)
=

n∑
k=1

ckE(Xk).



17. EXPECTATION 39

Thus the expectation is linear.

(4) For any function g : S → S′, g(X) : Ω→ S′ is a random variable taking values in S′,

and

E(g(X)) =
∑
x∈S

g(x)P(X = x).

An important example is given by g(x) = xk, and the corresponding expectation E(Xk)

is called the kth moment of the random variable X.

Proof.

E(g(X)) =
∑
ω∈Ω

g(X(ω))P({ω}) =
∑
x∈S

∑
ω∈Ω:X(ω)=x

g(X(ω))P({ω}) =
∑
x∈S

g(x)P(X = x).

�

(5) If X ≥ 0 takes integer values, then

E(X) =

∞∑
k=1

P(X ≥ k).

Proof. Exercise. �

Example 17.7. Let X ∼ Geometric(p). Then P(X ≥ k) = (1− p)k−1, and

E(X) =

∞∑
k=1

P(X ≥ k) =

∞∑
k=1

(1− p)k−1 =

∞∑
k=0

(1− p)k =
1

p
.

This is the quickest way to compute the expectation of a geometric random variable

(compare it to the computation in Example 17.4).

(6) If X,Y are independent random variables, then E(XY ) = E(X)E(Y ). In general, if

X1, X2 . . . XN are independent random variables,

E(X1 ·X2 · · ·XN ) = E(X1) · E(X2) · · ·E(XN ).

Proof. We prove it with two random variables.

E(XY ) =
∑
ω∈Ω

(XY )(ω)P({ω}) =
∑
x∈SX

∑
y∈SY

∑
ω:X(ω)=x,Y (ω)=y

X(ω)Y (ω)P({ω})

=
∑
x∈SX

∑
y∈SY

xyP(X = x, Y = y) =
∑
x∈SX

∑
y∈SY

xyP(X = x)P(Y = y)

=

( ∑
x∈SX

xP(X = x)

)
·
( ∑
y∈SY

xP(Y = y)

)
= E(X)E(Y ).

Note that, crucially, we have used independence in the second line in order to say that

P(X = x, Y = y) = P(X = x)P(Y = y). �



40 1. DISCRETE PROBABILITY

(7) If X : Ω → SX and Y : Ω → SY are two independent random variables, and

f : SX → S′X and g : SY → S′Y are two functions, then f(X), g(Y ) are independent

random variables. This generalises to arbitrarily many random variables, to give that

if X1, X2 . . . XN are independent, then f1(X1), f2(X2) . . . fN (XN ) are independent.

18. Exercises

Exercise 1. Let A be an event and define the random variable

1A(ω) =

1 if ω ∈ A

0 if ω /∈ A.

Show that E(1A) = P(A). If B is another event, show that E(1A1B) = P(A ∩ B). If,

moreover, A and B are independent show that E(1A1B) = P(A)P(B), and deduce that

E(1A1B) = E(1A)E(1B).

Exercise 2. Write a random word made of 10 characters by choosing a character uniformly

at random 10 times independently, from an alphabet of 26 characters. Let X be the random

variable that counts the number of A’s in the resulting word. What is the distribution of X?

Compute E(X), that is the average number of A’s in a random word of length 10. How about

repeating the experiment with a word of length N?

Exercise 3. Let X be a random variable taking values in the set SX = {0, 1, 2, 3} with

probability distribution (pk)
3
k=0 given by p0 = 1/4, p1 = 1/8, p2 = 1/8, p3 = 1/2. Compute

E(X).

Exercise 3. Compute the average number of times you have to roll a fair die in order to

get a 4.

Exercise 4. Draw a card from a standard deck N times and let X count the number of

cards which are diamonds. What is the distribution of X? Compute E(X), that is the average

number of diamonds in N cards drawn independently from a standard deck.

Exercise 5. Let X : Ω→ N have probability distribution (pk)k∈N where

pk = P(X = k) =
6

(πk)2
, k ≥ 1.

Show that E(X) = +∞.
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Exercise 6. Let X : Ω→ Z have probability distribution (pk)k∈Z where

p0 = P(X = 0) = 0,

pk = P(X = k) = P(X = −k) = 2−|k|−1, k ≥ 1.

Show that E(X) = 0.

Exercise 7. Show that if X ≥ 0 takes integer values, then

E(X) =

∞∑
k=1

P(X ≥ k).

Exercise 8. Roll two dice, and let X,Y denote the outcomes of the first and second die

respectively. Compute E(X) and E(Y ). Show that X and Y are independent. Compute the

expectation of the random variables S = X + Y and P = XY .

Exercise 9. Generalise the above exercise to an arbitrary number of dice. LetX1, X2 . . . XN

denote the outcome of N consecutive rolls of a die, and define

S =
N∑
k=1

Xk, P =
N∏
k=1

Xk.

Compute E(S) and E(P ).

Exercise 10. Roll two dice. Let

A = {the first die gives 4}, B = {the sum of the two dice is 7}.

Then we have seen that A,B are independent events. Define the indicator random variables

X = 1A, Y = 1B.

Show that X,Y are independent. Compute E(X),E(Y ),E(X + Y ),E(XY ). If, on the other

hand, we introduce

C = {the sum of the two dice is 3}, Z = 1C

then we have seen that A,C are not independent. Check that X,Z are not independent by

showing that E(XZ) 6= E(X)E(Z).

Exercise 11. Let X1, X2 . . . XN be i.i.d. Bernoulli(p) random variables, and set S =

X1 +X2 + · · ·+XN . Then S takes values in {0, 1 . . . N}. Show that

P(S = k) =

(
N

k

)
pk(1− p)N−k,

and conclude that S ∼Binomial(N, p). Now use the linearity of the expectation to show that

E(S) = Np. This is by far the quickest way to compute the expected value of a Binomial

random variable.
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Exercise 12. Alice and Bob have one deck of cards each, and they play the following game.

At each round they simultaneously pick a card from their decks: if none of them gets an ace

they re-insert the card in the deck and move to the next round, and otherwise whoever gets an

ace wins and the game ends. Note that there could be a tie, if they both get an ace. What is

the expected duration of the game?

19. Variance and covariance

19.1. Variance. Once we know the mean of a random variable X, we may ask how much

typically X deviates from it. This is measured by the variance.

Definition 19.1. For any random variable X with finite mean E(X), the variance of X is

defined to be

Var(X) = E[(X − E(X))2].

Thus Var(X) measures how much the distribution of X is concentrated around its mean: the

smaller the variance, the more the distribution is concentrated around E(X).

Properties of the variance. The variance of a random variable X : Ω→ S satisfies the

following properties:

(1) Var(X) = E(X2)− [E(X)]2.

Proof. We have

Var(X) = E[(X − E(X))2] = E[X2 + (E(X))2 − 2XE(X)] = E(X2)− [E(X)]2.

�

(2) If E(X) = 0 then Var(X) = E(X2).

(3) Var(X) ≥ 0, and Var(X) = 0 if and only if P(X = c) = 1 for some constant c ∈ R.

(4) If c ∈ R then Var(cX) = c2Var(X).

(5) If c ∈ R then Var(X + c) = Var(X).

(6) If X,Y are independent then Var(X + Y ) = Var(X) + Var(Y ). In general, if

X1, X2 . . . XN are independent then

Var(X1 +X2 + · · ·+XN ) = Var(X1) + Var(X2) + · · ·+ Var(XN ).

Example 19.2. If X ∼Bernoulli(p) then E(X) = p and Var(X) = p(1− p). It follows that if

X1, X2 . . . XN are i.i.d. Bernoulli(p) and S = X1 +X2 + · · ·+XN then S ∼Binomial(N, p) and

E(S) = Np,

Var(S) =

N∑
k=1

Var(Xk) = Np(1− p).

This is by far the quickest way to compute the variance of a Binomial random variable.
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19.2. Covariance. Closely related to the concept of variance is that of covariance.

Definition 19.3. For any two random variables X,Y with finite mean, we define their covari-

ance to be

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))].

19.3. Properties of the covariance. The covariance of two random variables X,Y

satisfies the following properties:

(1) Cov(X,Y ) = E(XY )− E(X)E(Y ).

Proof. We have

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]

= E[XY −XE(Y )− Y E(X) + E(X)E(Y )]

= E(XY )− E(X)E(Y ).

�

(2) Cov(X,X) = Var(X).

(3) Cov(X, c) = 0 for all c ∈ R.

(4) For c ∈ R, Cov(cX, Y ) = cCov(X,Y ) and Cov(X + c, Y ) = Cov(X,Y ).

(5) For X,Y, Z random variables, Cov(X + Z, Y ) = Cov(X,Y ) + Cov(Z, Y ).

The above properties generalise, to give that the covariance is bilinear. That is, for any

collections of random variables X1, X2 . . . Xn and Y1, Y2 . . . Yn, and constants a1, a2 . . . an and

b1, b2 . . . bn, it holds

Cov

 n∑
i=1

aiXi,
n∑
j=1

bjYj

 =
n∑
i=1

n∑
j=1

aibjCov(Xi, Yj).

(6) For any two random variables with finite variance, it holds

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).

Proof. We have

Var(X + Y ) = E[((X + Y )− E(X + Y ))2]

= E[(X − E(X) + Y − E(Y ))2]

= E[(X − E(X))2] + E[(Y − E(Y ))2] + 2E[(X − E(X))(Y − E(Y ))]

= Var(X) + Var(Y ) + 2Cov(X,Y ).

�

(7) If X,Y are independent then Cov(X,Y ) = 0.
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Proof. We have

Cov(X,Y ) = E(XY )− E(X)E(Y ) = E(X)E(Y )− E(X)E(Y ) = 0,

where the second equality follows from independence. �

Note that properties (6) and (7) together give that if X,Y are independent then Var(X + Y ) =

Var(X) + Var(Y ). We remark that the converse of property (7) is false: while X,Y independent

implies Cov(X,Y ) = 0, the fact that Cov(X,Y ) = 0 does not imply that X,Y are independent.

We show this in the following example.

Example 19.4 (Zero covariance does not imply independence). Let

X =


2, with probability 1

4

1, with probability 1
4

−1, with probability 1
4

−2, with probability 1
4

, Y = X2.

Then E(X) = 0 and E(XY ) = E(X3) = 0 by symmetry, so

Cov(X,Y ) = E(XY )− E(X)E(Y ) = 0.

However, X,Y are not independent, since

P(X = 1, Y = 4) = 0,

while

P(X = 1)P(Y = 4) = P(X = 1)P({X = 2} ∪ {X = −2}) =
1

4

1

2
> 0.

20. Exercises

Exercise 1. Toss two biased coin (giving head with probability p). Let

A = {the first coin gives head},

B = {the second coin gives head},

C = {at least one head}.

Let X = 1A, Y = 1B, Z = 1C . Compute expectation and variance of X,Y, Z. Compute

Cov(X,Y ), Cov(X,Z). Are X,Z independent? Compute E(X+Y ), E[(X+Y )2], E[log(X+2)],

E(4Y Z −X2).



20. EXERCISES 45

Exercise 2. LetX be a random variable taking values {0, 1, 2, 3} with probability p0, p1, p2, p3

respectively, with probability

p0 = p1 = p2 =
1

6
, p3 =

1

2
.

Compute E(X), E(X2), Var(X). Describe the random variable Y = |X − 2| (that is, list

the possible values of Y and the associated weights). Compute E(Y ), E(Y 2), Var(Y ) and

Cov(X,Y ). Are X,Y independent? Compute E(X + Y + 3), Var(X + Y − 2), E[(X − Y )X],

E[(X + Y )(X − Y )].

Exercise 3. Draw two cards from a standard deck. Let

A = {the first card is heart}, B = {the second card is heart}.

Define X = 1A, Y = 1B. Are A,B independent? Are X,Y independent? Write down the

weights of X and Y , and compute E(X), E(Y ), Cov(X,Y ), Var(X + Y ).

Exercise 4. Let X ∼ Geometric(p). Compute E(X(X − 1)). Deduce E(X2) and Var(X).

Exercise 5. Let X ∼ Poisson(λ). Compute E(X(X − 1)). Deduce E(X2) and Var(X).

Exercise 6. In a sequence of n independent trials the probability of a success at the ith

trial is pi. Let N denote the total number of successes. Find E(N) and Var(N).

Exercise 7. Let X be a random variable with finite mean µ. For x ∈ R define the function

f(x) = E[(X − x)2].

Computing f ′(x), show that f(x) is minimised at x = µ, and compute its minimum value.

Exercise 8. Let X be a random variable with mean µ and variance σ2. Compute E(X2)

and E[(X − 2)2] in terms of µ, σ2.

Exercise 9. Give an example of two random variables with equal mean but different

variance. Give an example of two random variables with the same mean and variance, but

different distribution.

Exercise 10. Let X ∼ Poisson(λ). Compute E(eX). Compute E(eαX) for all α ∈ R. Let

X,Y be independent Poisson(λ) random variables. For any α, β ∈ R compute

E(eαX+βY ).
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Exercise 11. Roll a die N times. Denote by X the total number of 3′s and by Y the total

number of 6’s. Are X and Y independent? Denote by Z the total number of even outcomes.

Are X and Z independent? Compute expectation and variance of X,Y, Z. [Hint: write X,Y, Z

as sums of independent indicator random variables.]

21. Joint and conditional distributions

21.1. Joint distribution.

Definition 21.1 (Joint distribution). Given two random variables X : Ω→ SX and Y : Ω→
SY , their joint distribution is defined as the collection of probabilities

P(X = x, Y = y), x ∈ SX , y ∈ SY .

Note that the joint distribution of X and Y is a probability distribution on SX × SY , so that

one could think of (X,Y ) as a random vector taking values in SX × SY .

Example 21.2. Let X,Y be independent Bernoulli random variables of parameter p, and

define Z = X + Y . Then, if we interpret X,Y as recording the outcome of two independent

coin tosses, Z denotes the total number of head. Here SX = SY = {0, 1} while SZ = {0, 1, 2}.
Moreover, by independence

P(X = x, Y = y) = P(X = x)P(Y = y) for all (x, y) ∈ SX × SY .

On the other hand, X and Z are not independent, and they have joint distribution

P(X = 0, Z = 0) = (1− p)2, P(X = 0, Z = 1) = (1− p)p,

P(X = 1, Z = 1) = p(1− p), P(X = 1, Z = 2) = p2.

Note that the weights of the joint distribution sum up to 1.

Remark 21.3. The joint distribution of two independent random variables is the product of

the marginal distributions.

From the joint distribution, one can recover the marginal distribution of X and Y by mean of

the total probability law:

P(X = x) =
∑
y∈SY

P(X = x, Y = y) for all x ∈ SX ,

P(Y = y) =
∑
x∈SX

P(X = x, Y = y) for all y ∈ SY .
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Example 21.4. Continuing Example 21.2, from the joint distribution of X,Z we can recover

the marginal distribution of Z via

P(Z = 0) = P(Z = 0, X = 0) + P(Z = 0, X = 1) = (1− p)2,

P(Z = 1) = P(Z = 1, X = 0) + P(Z = 1, X = 1) = 2p(1− p),

P(Z = 2) = P(Z = 2, X = 0) + P(Z = 2, X = 1) = p2.

This generalises to arbitrarily many random variables: for X1 . . . Xn random variables taking

values in S1 . . . Sn, their joint distribution is given by

P(X1 = x1, X2 = x2, . . . Xn = xn), x1 ∈ S1, . . . , xn ∈ Sn,

and we can recover the marginal distributions via

P(Xi = x) =
∑

x1...xi−1,xi+1...xn

P(X1 = x1, . . . , Xi = x, . . . ,Xn = xn)

for all x ∈ Si.

21.2. Conditional distribution.

Definition 21.5 (Conditional distribution). For two random variables X,Y , the conditional

distribution of X given the event {Y = y} (which we assume to have positive probability) is the

collection of probabilities

P(X = x|Y = y), x ∈ SX ,

where, clearly,

P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
.

If we know the distribution of Y , then we can recover the marginal distribution of X via the

total probability law:

P(X = x) =
∑
y∈SY

P(X = x|Y = y)P(Y = y).

Example 21.6. Continuing Example 21.2, the conditional distribution of Z given {X = 0} is

P(Z = 0|X = 0) = 1− p, P(Z = 1|X = 0) = p, P(Z = 2|X = 0) = 0.

Thus, conditional on the event {X = 0}, Z has Bernoulli(p) distribution.

On the other hand, the conditional distribution of Z given {X = 1} is

P(Z = 0|X = 1) = 0, P(Z = 1|X = 1) = 1− p, P(Z = 2|X = 1) = p,
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which shows that Z − 1 has Bernoulli(p) distribution. We can recover the marginal distribution

of Z via the law of total probability

P(Z = 0) = P(Z = 0|X = 0)P(X = 0) + P(Z = 0|X = 1)P(X = 1) = (1− p)2,

P(Z = 1) = P(Z = 1|X = 0)P(X = 0) + P(Z = 1|X = 1)P(X = 1) = 2p(1− p),

P(Z = 2) = P(Z = 2|X = 0)P(X = 0) + P(Z = 2, X = 1)P(X = 1) = p2.

Remark 21.7. If X,Y are independent, then the conditional distribution of X given {Y = y}
coincides with the distribution of X, since P(X = x|Y = y) = P(X = x) for all (x, y) ∈ SX×SY .

22. Inequalities

It is often the case that, rather than computing the exact value of E(X), we are only interested

in having a bound for it.

Theorem 22.1 (Markov’s inequality). Let X be a non-negative random variable, and λ ∈ (0,∞).

Then

P(X ≥ λ) ≤ E(X)

λ
.

Theorem 22.2 (Chebyshev’s inequality). Let X be a random variable with finite mean E(X).

Then, for λ ∈ (0,∞),

P(|X − E(X)| ≥ λ) ≤ Var(X)

λ2
.

Proof. We have

P(|X − E(X)| ≥ λ) = P((X − E(X))2 ≥ λ2) ≤ E[(X − E(X))2]

λ2
=

Var(X)

λ2
,

where the inequality follows from Markov’s inequality. �

We now discuss an application of the above inequalities. Toss a biased coin (giving head with

probability p) repeatedly, and let Xk = 1(head on the kth coin toss) for k = 1, 2 . . . n. Then

X1, X2 . . . Xn are independent Bernoulli(p) random variables. Define

X̄ =
1

n

n∑
k=1

Xk,

and note that X̄ records the proportion of heads in n coin tosses. Then

E(X̄) =
1

n

n∑
k=1

E(Xk) = p

and

Var(X̄) =
1

n2

n∑
k=1

Var(Xk) =
p(1− p)

n
.
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It therefore follows from Chebyshev’s inequality that

(22.1) P(|X̄ − p| ≥ 0.1) ≤ Var(X̄)

(0.1)2
=
p(1− p)
n · 0.01

.

Note that the function f(p) = p(1 − p) on [0, 1] is maximised at p = 1/2, as can be checked

by differentiating it, so that f(p) ≤ f(1/2) = 1/4. Using this to bound the right hand side of

(22.1) we get

P(|X̄ − p| ≥ 0.1) ≤ p(1− p)
n · 0.01

≤ 1

4n · 0.01
=

100

4n
.

This can be made as small as we want by taking n large enough.

Theorem 22.3 (Cauchy-Schwarz inequality). For all random variables X,Y , it holds

E(|XY |) ≤
√
E(X2)E(Y 2).

We do not prove this inequality. Note that if Y is constant, say P(Y = 1) = 1, then the

inequality gives

E(|X|) ≤
√
E(X2).

Note that for arbitrary random variables X,Y we have

Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]

by definition, from which

|Cov(X,Y )| ≤ E[|X − E(X)| · |Y − E(Y )|]

≤
√
E[(X − E(X))2] · E[(Y − E(Y ))2]

=
√

Var(X)Var(Y ),

where in the second inequality we have applied Cauchy–Schwarz to the random variables

X − E(X) and Y − E(Y ). It follows that if we define the correlation coefficient of X and Y as

Corr(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )

then |Corr(X,Y )| ≤ 1 and so

Corr(X,Y ) ∈ [−1, 1].

Note that Corr(X,Y ) = 0 if X and Y are independent, while Corr(X,Y ) = 1 if X = Y and

Corr(X,Y ) = −1 if X = −Y . The correlation coefficient is a standardized way of measuring

the correlation between X and Y .

Theorem 22.4 (Jensen’s inequality). Let X be an integrable random variable and let f : R→ R
be a convex function (it suffices for f to be convex on the image of X, i.e. on an interval that

contains SX). Then

f(E(X)) ≤ E(f(X)).
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We do not prove this. To remember the direction of the inequality, take f(x) = x2 and use

that E(X2)− [E(X)]2 = Var(X) ≥ 0. Note that the function f(x) = |x| is also convex, so by

Jensen’s inequality

|E(X)| ≤ E(|X|).

22.1. The Law of Large Numbers. As an important application of Chebyshev’s in-

equality we discuss the (Weak) Law of Large Numbers.

Theorem 22.5 (Weak law of large numbers). Let (Xk)k≥1 be a sequence of i.i.d. random

variables with finite mean µ and variance σ2, and define

SN = X1 +X2 + · · ·+XN .

Then for all ε > 0

P
(∣∣∣∣SNN − µ

∣∣∣∣ > ε

)
→ 0

as N →∞.

Proof. Note that E(SN/N) = µ and Var(SN/N) = σ2/N . It then follows from Cheby-

shev’s inequality that

P
(∣∣∣∣SNN − µ

∣∣∣∣ > ε

)
= P

(∣∣∣∣SNN − E
(
SN
N

)∣∣∣∣ > ε

)
≤ Var(SN/N)

ε2
=

σ2

Nε2
→ 0

as N →∞. �

23. Exercises

Exercise 1. Let A,B denote two events on the same sample space Ω, and define two

random variables on this space by setting X = 1(A) and Y = 1(B). Compute the joint

distribution of X and Y .

Exercise 2. Let X,Y have joint distribution given by

P(X = 0, Y = 1) = 1/4

P(X = 1, Y = 1) = 1/4

P(X = 2, Y = 1) = 0

P(X = 3, Y = 1) = 1/8

P(X = 0, Y = 5) = 1/8

P(X = 1, Y = 5) = 1/12

P(X = 2, Y = 5) = 1/12

P(X = 3, Y = 5) = 1/12
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(you should check that the above weights sum up to 1). Compute the marginal distributions of

X and Y . Compute E(X), E(Y ), Var(X) and Var(Y ). Are X and Y independent?

Exercise 3. Let X,Y have joint distribution

P(X = 0, Y = 1) = 1/3

P(X = 0, Y = 2) = 1/6

P(X = 0, Y = 3) = 1/12

P(X = 1, Y = 1) = 1/12

P(X = 1, Y = 2) = 1/6

P(X = 1, Y = 3) = 1/6.

Compute the marginal distribution of X and the marginal distribution of Y . Compute E(X),

E(Y ), Var(X) and Var(Y ). Are X and Y independent?

Exercise 4. Roll two dice, and let X,Y denote the outcomes of the first and second die

respectively. Compute the joint distribution of X and Y . Compute the distribution of X given

the event {Y = 2}.

Exercise 5. Let X ∼ Geometric(p). Compute the distribution of X conditional on the

event {X ≥ j}, for any j positive integer, that is the collection of weights

P(X = k|X ≥ j), k ≥ 1.

Exercise 6. Toss n fair coins, and denote the outcomes by X1, X2 . . . Xn. Compute the

joint distribution of X1, X2 . . . Xn. Use the law of total probability to compute the marginal

distribution of X1 from the joint distribution.

Exercise 7. Let X be a Binomial(N, p) random variable. Compute the joint distribution

of X and X2.

Exercise 8. Let K be a random variable taking values {0, 1, 2 . . . 7} with probability 1/8

each. Define

X = cos

(
Kπ

4

)
, Y = sin

(
Kπ

4

)
.

Show that Cov(X,Y ) = 0 but X,Y are not independent.
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Exercise 9. Toss a biased coin repeatedly, and let X denote the number of tosses until

(and including) the second head. Show that

P(X = k) = (k − 1)(1− p)k−2p2

for k ≥ 2. Explain how X can be represented as the sum of two independent and identically

distributed random variables. Use this representation to derive the mean and variance of X.

Exercise 10. In the same setting as the above exercise, let X denote the number of tosses

until (and including) the ath head, for a ≥ 2. Show that in this case

E(X) =
a

p
, Var(X) =

a(1− p)
p2

.

Exercise 11. Let X1, X2 . . . Xn be independent and identically distributed random vari-

ables with finite mean µ and variance σ2. Define the sample mean

X̄ =
1

n

n∑
k=1

Xk.

Use Chebyshev’s inequality to show that

P(|X̄ − µ| > 2σ) ≤ 1

4n
.

Use this bound to find n such that

P(|X̄ − µ| > 2σ) ≤ 0.01.

Exercise 12. Toss a fair coin repeatedly. Let X denote the number of tosses until (and

including) the first head, while Y denotes the number of tosses until (and including) the first

tail. Show that

X ∼ Geometric(1/2), Y ∼ Geometric(1/2),

and X,Y are not independent. Use Cauchy–Schwarz to show that E(XY ) ≤ 6 and deduce that

Cov(X,Y ) ≤ 2.

Exercise 13. Let X be a bounded random variable. Show that for every p > 0 and all

x > 0

P(|X| ≥ x) ≤ E(|X|p)x−p.

Show further that for all β ≥ 0

P(X ≥ x) ≤ E(eβX)e−βx.
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Exercise 14. Let X be a Poisson random variable of parameter λ. We have seen in the

previous exercise that for all β ≥ 0

P(X ≥ x) ≤ E(eβX)e−βx.

By finding the value of β that minimises the right hand side, show that for all x ≥ λ

P(X ≥ x) ≤ exp{−x log(x/λ)− λ+ x}.

Exercise 15(*). Let x1, x2 . . . xn be positive numbers, and let X be a random variable

taking value xk with probability 1/n for each k = 1 . . . n (that is, X is uniformly distributed

over the set of values {x1, x2 . . . xn}). By applying Jensen’s inequality to X show that(
1

n

n∑
k=1

1

xk

)−1

≤ 1

n

n∑
k=1

xk.

Show that if y1, y2 . . . yn is any reordering of the values x1, x2 . . . xn, then

1

n

n∑
k=1

yk
xk
≥ 1.





CHAPTER 2

Continuous probability

1. Some natural continuous probability distributions

Up to this point we have only considered probability distributions on discrete sets, such as

finite sets, N or Z. We now turn our attention to continuous distributions.

Definition 1.1 (Probability density function). A function f : R→ R is a probability density

function if

f(x) ≥ 0 for all x ∈ R,
∫ +∞

−∞
f(x)dx = 1.

We will often write p.d.f. in place of probability density function for brevity. Given a p.d.f., we

can define a probability measure P on R by setting

P([a, b]) =

∫ b

a
f(x)dx

for all a, b ∈ R. Note that

P((−∞, a]) =

∫ a

−∞
f(x)dx, P(R) =

∫ +∞

−∞
f(x)dx = 1,

and P([a, b)) = P((a, b]) = P((a, b)) = P([a, b]). We interpret f(x) as the density of probability

at x (the continuous analogue of the weight of x), and P([a, b]) as the probability of the interval

[a, b]. For this course we restrict to piecewise continuous probability density functions.

Example 1.2. Take f(x) = e−|x|

2 . Then f(x) ≥ 0 for all x ∈ R, and∫ +∞

−∞
f(x)dx = 2

∫ ∞
0

e−x

2
dx = 1.

Thus f is a valid probability density function. If µ denotes the associated probability measure,

we have

P([0,∞)) =
1

2

∫ ∞
0

e−xdx =
1

2
, P([−1, 1]) =

1

2

∫ 1

−1
e−|x|dx =

∫ 1

0
e−xdx = 1− e−1.

This tells us that if we choose a real number at random according to P, the probability that this

number is non-negative is 1/2 (which was also clear as f is symmetric), while the probability

that it has modulus at most 1 is 1− e−1.

55
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We now list some natural continuous probability distributions. Throughout, we use the following

notation: for A ⊆ R

1A(x) =

1, if x ∈ A

0, if x /∈ A,

in analogy with the notation introduced for indicator random variables.

1.1. Uniform distribution. For a, b ∈ R with a < b, the density function

f(x) =
1

b− a
1[a,b](x)

defines the uniform distribution on [a, b]. Note that∫ +∞

−∞
f(x)dx =

∫ b

a
f(x)dx = 1.

The uniform distribution gives to each interval contained in [a, b] a probability proportional to

its length.

1.2. Exponential distribution. For λ ∈ (0,∞), the density function

f(x) = λe−λx1[0,+∞)(x)

defines the exponential distribution of parameter λ. Note that∫ +∞

−∞
f(x)dx =

∫ ∞
0

λe−λxdx = 1.

1.3. Cauchy distribution. The density function

f(x) =
1

π(1 + x2)

defines the Cauchy distribution. Note that∫ +∞

−∞
f(x)dx =

2

π

∫ +∞

0

1

1 + x2
dx =

2

π
arctan(x)

∣∣∣+∞
0

= 1.

1.4. Gaussian distribution. The density function

f(x) =
1√
2π
e−x

2/2

defines the standard Gaussian distribution, or standard normal distribution, written N(0, 1).

More generally, for µ ∈ R and σ2 ∈ (0,∞), the density function

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2
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defines the Gaussian distribution of mean µ and variance σ2, written N(µ, σ2). To check that

f integrates to 1 we can use Fubini’s theorem and change variables into polar coordinates to

obtain (∫ +∞

−∞
e−x

2/2dx

)2

=

∫ +∞

−∞

∫ +∞

−∞
e−(x2+y2)/2dxdy =

∫ 2π

0

∫ ∞
0

e−r
2/2rdrdθ = 2π.

2. Continuous random variables

A random variable X : Ω→ R has probability density function f if

P(X ∈ [a, b]) =

∫ b

a
f(x)dx

for all a < b ∈ R. Note that P(X = x) = 0 for all x ∈ R, in contrast with the discrete case.

We again define the distribution function of X by

FX(x) = P(X ≤ x) =

∫ x

−∞
f(y)dy.

Definition 2.1. A random variable X is said to be continuous if the associated distribution

function FX is continuous.

Note that by the fundamental theorem of calculus

F ′X(x) = fX(x),

thus the probability density function is the derivative of the distribution function. Moreover,

lim
x→−∞

FX(x) = 0, lim
x→+∞

FX(x) = 1

and FX is non-decreasing, since F ′X(x) = fX(x) ≥ 0.

Definition 2.2. Let X be a continuous random variable with probability density function f

and distribution function F . Then, provided∣∣∣ ∫ +∞

0
xf(x)dx

∣∣∣ <∞, or
∣∣∣ ∫ 0

−∞
xf(x)dx

∣∣∣ <∞,
we define

E(X) =

∫ +∞

−∞
xf(x)dx.

The above finiteness assumptions are needed to ensure that the integral defining E(X) is well

defined.

Example 2.3. If X ∼ Exponential(λ) then we integrate by parts to get

E(X) =

∫ ∞
0

xλe−λxdx = −xe−λx
∣∣∣∞
0

+

∫ ∞
0

e−λxdx =
1

λ
.
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Example 2.4. If X ∼ Cauchy then∫ ∞
0

x

π(1 + x2)
dx = +∞

and similarly ∫ 0

−∞

x

π(1 + x2)
dx = −∞,

so the expectation is not defined.

Example 2.5. If X ∼ N(0, 1) then

E(X) =

∫ +∞

−∞

x√
2π
e−x

2/2dx = 0

by symmetry.

The expectation satisfies the same properties as in the case of discrete random variables. In

particular it is linear, and for a function g : R→ R we have

E(g(X)) =

∫ +∞

−∞
g(x)f(x)dx.

Moreover, if X is non-negative, we have the alternative formula

E(X) =

∫ +∞

0
P(X ≥ x)dx =

∫ +∞

0
(1− F (x))dx.

Example 2.6. If X ∼ Exponential(λ) then P(X ≥ x) = e−λx, so we can use the above formula

to compute

E(X) =

∫ ∞
0

P(X ≥ x)dx = −e
−λx

λ

∣∣∣∞
0

=
1

λ
.

Definition 2.7. A random variable X is said to be integrable if

E(|X|) =

∫ +∞

−∞
|x|f(x)dx <∞.

For X integrable random variable, we define the variance of X by

Var(X) = E[(X − E(X))2] =

∫
(x− E(X))2f(x)dx.

In analogy with the discrete case,

Var(X) = E(X2)− [E(X)]2 =

∫
x2f(x)dx−

(∫
xf(x)dx

)2

.

Example 2.8. If X ∼ N(0, 1) then we integrate by parts to get

Var(X) = E(X2) =

∫ +∞

−∞

x2

√
2π
e−x

2/2dx = − x√
2π
e−x

2/2
∣∣∣+∞
−∞

+

∫ +∞

−∞

e−x
2/2

√
2π

dx = 1.
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3. Exercises

Exercise 1. Let X be a random variable with p.d.f. f(x) = ce−3x1[0,∞)(x). Find c. Find

P(X ∈ [2, 3]), P(|X| ≤ 1), P(X > 4).

Exercise 2. Compute mean and variance of X if X ∼Uniform[a, b].

Exercise 3. If X ∼ Exponential(λ) compute the variance of X.

Exercise 4. Let X be a Uniform random variable in [−1, 1]. Compute E(X3) and E(X4).

Can you compute E(X2n+1) for n ≥ 0?

Exercise 5. Let X be a continuous random variable with probability density function

f(x) = c(α)xα1[0,1](x),

for some α > 0 and some constant c(α).

(i) Compute the constant c(α).

(ii) Compute E(X).

(iii) Determine α such that E(X) = 1/2.

(iv) Assuming that α > 1, compute E(1/X).

Exercise 6. The Gamma function is defined by

Γ(α) =

∫ ∞
0

xα−1e−xdx.

Using integration by parts, show that for all k positive integers

Γ(k + 1) = kΓ(k).

By comparison with the exponential distribution, explain why Γ(1) = 1. Use this to conclude

that

Γ(k) = (k − 1)!

for all k positive integers.

Exercise 7. [The Gamma distribution] For α, λ ∈ (0,+∞), define

f(x) =
λαxα−1e−λx

Γ(α)
1[0,+∞)(x)

where

Γ(α) =

∫ ∞
0

xα−1e−xdx.

Show that the f above defines a p.d.f.. This is the Gamma distribution of parameters α, λ.

Note that by setting α = 1 we recover the exponential distribution, of which the Gamma

distribution is therefore a generalisation. Show that E(X) = α/γ.
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Exercise 8. Let X be a random variable with p.d.f. f(x) = cx1[0,2](x). Find c. Find the

distribution function of Y = 2x. Differentiate con compute the probability density function of

Y .

Exercise 9. Let X be a continuous random variable with probability density function

fX(x) = 3x21[0,1](x).

(i) Write down the distribution function FX of X.

(ii) Compute mean and variance of X.

(iii) Set Y = 1−X. Compute the distribution function FY of Y , and hence the probability

density function fY (y).

(iv) Compute mean and variance of Y .

Exercise 10. A stick of unit length is cut in two random points U1 and U2 independent

and uniformly distributed in (0, 1). Determine the probability P(min(U1, U2) > x) for all x ∈ R.

Set X = min(U1, U2). Write down the distribution function FX of X. Differentiate to compute

the probability density function fX of X.

Exercise 11. Let X be an exponential random variable of parameter λ. Show that for any

0 < s < t it holds

P(X > t|X > s) = P(X > t− s).

This is the memoryless property of the exponential distribution. Indeed, thinking of X as a

random time (say the time of arrival of a bus), it tells us that given that X > s, the random

time X − s still has exponential distribution of parameter λ. In fact, this property characterises

the exponential distribution, but we won’t prove this.

Exercise 12. Show that if X is a standard Gaussian X ∼ N(0, 1), then

E(eθX) = eθ
2/2.

Deduce that if Y = σX + µ then

E(eθY ) = eθµ+ θ2σ2

2 .

4. Transformations of one-dimensional random variables

Let X be a random variable taking values in S ⊆ R (that is, with probability density function

fX supported on S). We consider a function g : S → S′ and define the random variable

Y = g(X). What is the probability density function fY of Y ?
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To answer this question, let us assume that g is strictly increasing, so that g′(x) > 0 for all x.

Then we can look at the distribution function

FY (y) = P(Y ≤ y) = P (g(X) ≤ y) = P
(
X ≤ g−1(y)

)
= FX(g−1(y)).

Differentiating both sides, we find

fY (y) =
d

dy
FX
(
g−1(y)

)
= fX(g−1(y))

d

dy
g−1(y).

A similar argument applies for the case of g decreasing.

Example 4.1. Let X ∼ Uniform[0, 1]. We may assume that X only takes values in (0, 1] since

P(X = 0) = 0. Define Y = − logX, so that Y takes values in [0,∞). Then we have S = (0, 1],

S′ = [0,∞) and g(x) = − log x strictly decreasing. Then for y ≥ 0

FY (y) = P(Y ≤ y) = P(− logX ≤ y) = P(X ≥ e−y) = 1− e−y.

By differentiating both sides with respect to y, we find

fY (y) = e−y,

so Y ∼ Exponential(1).

Example 4.2. Let X ∼ N(0, 1) and for µ ∈ R and σ > 0 define Y = σX + µ. Then

FY (y) = P(Y ≤ y) = P(σX + µ ≤ y) = P
(
X ≤ y − µ

σ

)
= FX

(y − µ
σ

)
,

from which, differentiating with respect to to y, we get

fY (y) = fX

(y − µ
σ

) 1

σ
=

1√
2πσ

e−
(y−µ)2

2σ2 ,

which shows that Y ∼ N(µ, σ2).

A similar argument shows that, conversely, if X ∼ N(µ, σ2) then Y = X−µ
σ ∼ N(0, 1).

Note that the above example gives us a way to deduce the mean and variance of a N(µ, σ2)

from the ones of N(0, 1). Indeed, if X ∼ N(0, 1) then Y = σX + µ ∼ N(µ, σ2), from which,

using the linearity of expectation,

E(Y ) = σE(X) + µ = µ,

and

Var(Y ) = σ2Var(X) = σ2.
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5. Multivariate distributions

5.1. Joint distribution. We start by defining the joint probability density function of

two real-valued random variables.

Definition 5.1. Two random variables X,Y are said to have joint probability density function

fX,Y if

P((X,Y ) ∈ A) =

∫∫
A
fX,Y (x, y)dxdy

for all subsets A ⊆ R2. Their joint distribution function is given by

FX,Y (x, y) = P(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dudv.

Properties of the joint probability density function fX,Y

(i) fX,Y (x, y) ≥ 0,

(ii)

∫ +∞

−∞

∫ +∞

−∞
fX,Y (x, y)dxdy = 1.

Note that fX,Y : R2 → R and FX,Y : R2 → [0, 1], and

P((X,Y ) ∈ (a, b)× (c, d)) =

∫ b

a

∫ d

c
fX,Y (x, y)dxdy

for all (a, b)× (c, d) ⊆ R2. Moreover,

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y),

so we can obtain the joint p.d.f. by differentiating the joint distribution function.

Example 5.2. Let (X,Y ) have joint p.d.f.

fX,Y (x, y) = 6xy21[0,1]2(x, y).

We compute P((X,Y ) ∈ A) where A = {(x, y) : x+ y ≥ 1}. We have

P((X,Y ) ∈ A) =

∫∫
A
fX,Y (x, y)dxdy =

∫ 1

0

∫ 1

1−y
6xy2dxdy =

∫ 1

0
(6y3 − 3y4)dy =

9

10
.

From the joint p.d.f. we can recover the marginals by integrating over one of the variables:

fX(x) =

∫ +∞

−∞
fX,Y (x, y)dy, fY (y) =

∫ +∞

−∞
fX,Y (x, y)dx.
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Example 5.3. Continuing with the above example, we find

fX(x) =

∫ 1

0
6xy2dy = 2x for x ∈ [0, 1],

and

fY (y) =

∫ 1

0
6xy2dx = 3y2 for y ∈ [0, 1].

Note that fX,Y (x, y) = fX(x)fY (y). In this case we say that X and Y are independent.

Definition 5.4. Two random variables X,Y are said to be independent if

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y)

for all (x, y) ∈ R2. Equivalently, they are independent if and only if their joint p.d.f. is given

by the product of the marginals, that is

fX,Y (x, y) = fX(x)fY (y).

Example 5.5. Let X,Y have joint p.d.f.

fX,Y (x, y) = λe−λx1[0,∞)×[0,1](x, y)

for λ > 0. Then

fX(x) = λe−λx1[0,∞)(x), fY (y) = 1[0,1](y),

so fX,Y = fXfY and X,Y are independent exponential random variables, with X ∼ exp(λ)

and Y ∼ U [0, 1].

All the above definitions generalise in the obvious way for the joint distribution of an arbitrary

number of random variables. .

5.2. Covariance. Given two random variables X,Y and a function g : R2 → R, we have

the formula

E(g(X,Y )) =

∫ +∞

−∞

∫ +∞

−∞
g(x, y)fX,Y (x, y)dxdy.

In particular, taking g(x, y) = xy we find

E(XY ) =

∫ +∞

−∞

∫ +∞

−∞
xyfX,Y (x, y)dxdy.

Definition 5.6 (Covariance). Given two random variables X,Y with joint p.d.f. fX,Y we define

their covariance as

Cov(X,Y ) = E(XY )− E(X)E(Y ).
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Note that if X,Y are independent then fX,Y (x, y) = fX(x)fY (y) and so

E(XY ) =

∫ +∞

−∞

∫ +∞

−∞
xyfX,Y (x, y)dxdy =

∫ +∞

−∞

∫ +∞

−∞
xyfX(x)fY (y)dxdy

=

(∫ +∞

−∞
xfX(x)dx

)(∫ +∞

−∞
yfY (y)dy

)
= E(X)E(Y )

which shows that Cov(X,Y ) = 0. The covariance satisfies all the properties that we have listed

for the discrete case.

Example 5.7. Let X,Y be two random variables with joint p.d.f. fX,Y (x, y) = cxy for

0 ≤ x ≤ y2 ≤ 1 and y ∈ [0, 1]. To ensure that fX,Y integrates to 1 we take c = 12. We find

E(XY ) =

∫ 1

0

∫ y2

0
12x2y2dxdy = 4

∫ 1

0
y8dy =

4

9
,

and marginals

fX(x) =

∫ 1

√
x

12xydy = 6x(1− x), fY (y) =

∫ y2

0
12xydx = 6y5,

from which E(X) = 1/2 and E(Y ) = 6/7. It follows that Cov(X,Y ) = E(XY )− E(X)E(Y ) =
4
9 −

1
2

6
7 6= 0, and therefore X,Y are not independent.

6. Limit theorems

In this section we show how the Gaussian distribution arises in the limiting behaviour of sums

of i.i.d. (independent and identically distributed) random variables. Recall the weak law of

large numbers.

Theorem 6.1 (Weak law of large numbers). Let (Xk)k≥1 be a sequence of i.i.d. random variables

with finite mean µ and variance σ2, and define

SN = X1 +X2 + · · ·+XN .

Then for all ε > 0

P
(∣∣∣∣SNN − µ

∣∣∣∣ > ε

)
→ 0

as N →∞.

We have already proved this result, as a corollary of Chebyshev’s inequality. Once we know that

SN/N → µ as N →∞, we could ask what is the error we make when approximating SN by

Nµ for large N . This is the object of the next result, and it is where the Gaussian distribution

comes in.
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Theorem 6.2 (Central Limit Theorem). Let (Xk)k≥1 be a sequence of i.i.d. random variables

with finite mean µ and variance σ2. Then for all x ∈ R

P
(
SN −Nµ
σ
√
N

≤ x
)
→ Φ(x)

as N →∞, where

Φ(x) =

∫ x

−∞

1√
2π
e−y

2/2dy

is the distribution function of a standard Gaussian random variable.

Thus the central limit theorem tells us that, for large N , we can approximate the sum SN by a

Gaussian random variable with mean Nµ and variance Nσ2.

7. Exercises

Exercise 1. Let X ∼ Exponential(1). Find the p.d.f. of Y = X2.

Exercise 2. Let X ∼ Cauchy. Find the p.d.f. of Y = arctanX.

Exercise 3. Conversely, show that if X ∼ U [−π/2, π/2] and Y = tanX, then Y ∼ Cauchy.

Exercise 4. Let X ∼ U [−1, 1]. Find the p.d.f. of Y = 2X + 5 and Z = X3 + 1.

Exercise 5. Let X ∼ U [0, 1], and let F be a strictly increasing distribution function. Show

that the random variable Y = F−1(X) has distribution function F . This is important for

simulating random variables on a computer.

Exercise 6. Show that if X ∼ N(µ, σ2) then Y = X−µ
σ ∼ N(0, 1).

Exercise 7. Let (X,Y ) be uniformly distributed on [0, 1]2, which is equivalent to saying

that the joint p.d.f. of X,Y is given by

fX,Y (x, y) = 1[0,1]2(x, y).

Show that P (X < Y ) = 1/2 and P(X ≤ 1/2, X + Y ≤ 1) = 3/8.

Exercise 8. Let X,Y be independent exponential random variables of parameter λ > 0.

Compute P(X ≥ z, Y ≥ z). Deduce the distribution function FZ(z) of Z = min{X,Y }.
Differentiate to get the p.d.f. of Z: do you recognise it? Deduce E(Z) and Var(Z).

Exercise 9. Let X,Y have joint p.d.f. fX,Y (x, y) = c(x+ 2y)1[0,1]2(x, y). Find c. Compute

P(X < Y ) and P(X + Y < 1/2). Find the marginals fX and fY . Compute E(X), E(Y ) and

Cov(X,Y ). Compute E(XY 2).
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Exercise 10. Let X,Y have joint distribution function

FX,Y (x, y) = 1− e−x − e−y + e−(x+y)

for (x, y) ∈ [0,∞)2. Find P(X < 4, Y < 2). Find P(X < 3). Differentiate to compute the joint

p.d.f. fX,Y of X,Y . Check that fX,Y integrates to 1.

Exercise 11. Let X,Y have joint p.d.f. fX,Y (x, y) = cx2ey1{0<x<y<1}(x, y). Find c. Find

the marginals fX and fY . Are X,Y independent? Compute E(XY ), E(X2e−Y ), E(X(1 + 4Y )),

E(eX+Y ), E(eX−Y ).

Exercise 12. The radius of a circle is exponentially distributed with parameter λ. De-

termine the probability density function of the perimeter of the circle and of the area of the

circle.

Exercise 13. Let Y ∼ N(µ, σ2). Determine the p.d.f. of X = eY .

Exercise 14. Let X,Y have joint p.d.f. fX,Y (x, y) = 1
y1{0<x<y<1}(x, y). Check that fX,Y

integrates to 1. Find the marginal p.d.f.’s fX and fY . Are X,Y independent? Compute E(XY ),

E(XY k) for k positive integer.



APPENDIX A

Background on set theory

A set is a collection of elements, which can be finite or infinite. If A is a finite set, |A| denotes

the number of elements of A. The empty set is the set consisting of no element, and it is

denoted by ∅. If A and B are two sets, then

• A ∪B = {x : x ∈ A or x ∈ B} (union).

• A ∩B = {x : x ∈ A and B} (intersection).

• A \B = {x ∈ A but x /∈ B} (difference).

• A ⊂ B if all elements of A are also elements of B.

• If A ∩B = ∅ then we say that A and B are disjoint.

Note that the empty set is disjoint from every set, including itself. In fact, the empty set is the

only set disjoint from itself. If Ω is a set, and A ⊆ Ω, we define the complement of A in Ω as

Ac = Ω \A = {x ∈ Ω but x /∈ A}. Note that A ∩Ac = ∅ so A and Ac are disjoint.

Example 0.1. Take A = {1, 2, 3}, B = {2, 4, 6, 8}. Then

A ∪B = {1, 2, 3, 4, 6, 8}, A ∩B = {2}, A \B = {1, 3}, B \A = {4, 6, 8}.

If C = {6, 7, 8} then

A∪C = {1, 2, 3, 6, 7, 8}, A∩C = ∅, A\C = A, A∪B∪C = {1, 2, 3, 4, 6, 7, 8}, A∩B∩C = ∅.

Take Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Then A,B,C ⊆ Ω. Their complements in Ω are

Ac = {4, 5, 6, 7, 8, 9, 10}, Bc = {1, 3, 5, 7, 9, 10}, Cc = {1, 2, 3, 4, 5, 9, 10},

We can also define infinite unions and intersections. For a sequence of sets (An)n∈N set⋃
n∈N

An = A1 ∪A2 ∪A3 ∪ · · · = {x : x ∈ An for some n ∈ N},

⋂
n∈N

An = A1 ∩A2 ∩A3 ∩ · · · = {x : x ∈ An for all n ∈ N}.

Example 0.2. Take An = {n, n+ 1, n+ 2 . . .} = {k ∈ N : k ≥ n}. Then⋃
n∈N

An = N,
⋂
n∈N

An = ∅.

67
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If on the other hand we take An as before but set An = A10 for all n ≥ 10 then⋃
n∈N

An = N,
⋂
n∈N

An = A10 = {10, 11, 12 . . .}.

Given two sets A,B, we define their product as

A×B = {(x, y) : x ∈ A, y ∈ B}.

Example 0.3. If A = {1, 2, 3} and B = {α, β} then

A×B = {(1, α), (1, β), (2, α), (2, β), (3, α), (3, β)},

A×A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)},

B ×B = {(α, α), (α, β), (β, α), (β, β)}.

Note that the pairs are ordered, and that |A×B| = |A| · |B|. We can define the product of an

arbitrary number of sets by setting

A1 ×A2 ×A3 · · ·An = {(x1, x2, x3 . . . xn) : xk ∈ Ak}.

Example 0.4. If A = {0, 1}, B = {a} and C = {x, y} then

A×B × C = {(0, a, x), (0, a, y), (1, a, x), (1, a, y)}.

Note that |A×B × C| = 2 · 1 · 2 = 4.
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